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Hyperbolic PDEs Conservation laws

1D Advective transport

1D fluid flow

∫ x2

x1

q(x, t)dx = mass of tracer between x1 and x2.

d

dt

∫ x2

x1

q(x, t)dx = F1(t)− F2(t),

where Fi is the flux of mass from right to left at xi.
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Hyperbolic PDEs Conservation laws

Conservation law

For general autonomous flux F = f(q), we have

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t)).

For f sufficiently smooth, we have:

d

dt

∫ x2

x1

q(x, t) dx = −
∫ x2

x1

∂

∂x
f(q(x, t)) dx,

which we can write as∫ x2

x1

[
∂

∂t
q(x, t) +

∂

∂x
f(q(x, t))

]
dx = 0.
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Hyperbolic PDEs Conservation laws

Conservation law

Differential form of the 1D conservation law:

qt + f(q)x = 0.
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Hyperbolic PDEs Conservation laws

Hyperbolic systems

A 1D quasilinear system

qt +A(q, x, t)qx = 0

is hyperbolic at (q, x, t) if A(q, x, t) is diagonalizable with real
eigenvalues.

The 1D nonlinear conservation law

qt + f(q)x = 0

is hyperbolic if the Jacobian matrix ∂f
∂q is diagonalizable with real

eigenvalues for each physically relevant q.
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Hyperbolic PDEs Linear systems

Linear hyperbolic systems

Consider the linear hyperbolic IVP{
qt +Aqx = 0,

q(x, 0) = q0(x)

Then we can write A = RΛR−1, where R ∈ Rm×m is the matrix of
eigenvectors and Λ ∈ Rm×m is the matrix of eigenvalues. Making the
substitution q = Rw, we get the decoupled system

wpt + λpwpx = 0, p = 1 . . .m.
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Hyperbolic PDEs Linear systems

The 1D advection equation{
wt + λwx = 0,

w(x, 0) = w0(x)

is easily solved using the method of characteristics:

w(x, t) = w0(x− λt).
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Hyperbolic PDEs Linear systems

We can now write

q(x, t) =

m∑
p=1

wp(x, t)rp

=

m∑
p=1

wp0(x− λpt)rp

=

m∑
p=1

[` pq0(x− λpt)]rp

So the solution q(x, t) is a superposition of waves with speeds λp.
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Hyperbolic PDEs Linear systems

Domain of dependence and Range of Influence

(R. Leveque, 2002)
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Hyperbolic PDEs Riemann Problem

Riemann Problem

The hyperbolic equation with initial data

q0(x) =

{
q` if x < 0
qr if x > 0

is known as the Riemann problem.

For the linear constant-coefficient system, the solution is given by:

q(x, t) = q` +
∑

p:λp<x/t

[`p(qr − q`)] rp

= qr −
∑

p:λp≥x/t

[`p(qr − q`)] rp.
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Hyperbolic PDEs Riemann Problem

Riemann Problem

Solution to Riemann problem using characteristics:
(λ1 < 0 < λ2 < λ3)
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Hyperbolic PDEs Boundary Values

Initial-Boundary Value problems

For problems with bounded domains a ≤ x ≥ b, we also need boundary
conditions. The signs of the wave speeds dictate how many conditions
are required at each boundary.
For example, the advection equation

qt + qx = 0

requires only boundary conditons at x = a.
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Finite Volume Method

Finite Volume Method

We subdivide the spatial domain into grid cells Ci, and in each cell we
approximate the average of q at time tn:

Qni ≈
1

m(Ci)

∫
Ci

q(x, tn) dx.

At each time step we update these values based on fluxes between cells.
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Finite Volume Method

1D Finite Volume Method

In 1D, Ci = (xi−1/2, xi+1/2).

Assume uniform grid spacing ∆x = xi+1/2 − xi−1/2.
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Finite Volume Method

1D conservation law

Recall the autonomous conservation law:

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t)).

Integrating in time from tn to tn+1 and dividing by ∆x, we can derive

1

∆x

∫
Ci

q(x, tn+1) dx =
1

∆x

∫
Ci

q(x, tn) dx

− 1

∆x

[∫ tn+1

tn

f(q(xi+1/2, t)) dt−
∫ tn+1

tn

f(q(xi−1/2, t)) dt

]
.

Marc Kjerland (UIC) FV method for hyperbolic PDEs February 7, 2011 17 / 32



Finite Volume Method

Approximation to flux term

Note that we cannot in general evaluate the time integrals exactly.
However, it does suggest numerical methods of the form

Qn+1
i = Qni −

∆t

∆x

(
Fni+1/2 − F

n
i−1/2

)
,

where

Fni−1/2 ≈
1

∆t

∫ tn+1

tn

f(q(xi−1/2, t)) dt.
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Finite Volume Method

Numerical flux

For a hyperbolic problem, information propagates at a finite speed. So
it is reasonable to assume that we can obtain Fni−1/2 using only the
values Qni−1 and Qni :

Fni−1/2 = F(Qni−1, Q
n
i )

where F is some numerical flux function. Then our numerical method
becomes

Qn+1
i = Qni −

∆t

∆x

[
F(Qni , Q

n
i+1)−F(Qni−1, Q

n
i )
]
.
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Finite Volume Method Convergence

Necessary conditions for convergence

If we want our numerical solution to converge to the true solution as
∆x,∆t→ 0, then

I The method must be consistent, i.e. the local truncation error
goes to 0 as ∆t→ 0

I The method must be stable, i.e. small errors in each time step do
not grow too quickly.
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Finite Volume Method Convergence

Consistency

Suppose we have a numerical method Qn+1 = N (Qn) and “true”
values qn and qn+1. Then the local truncation error is defined to be:

τ =
N (qn)− qn+1

∆t
.

The method is consistent if τ vanishes as ∆t→ 0 for all smooth q(x, t)
that satisfy the differential equation. This is usually easy to check
using Taylor expansions.
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Finite Volume Method Convergence

CFL condition

A necessary condition for stability is the Courant-Friedrichs-Levy
condition: A numerical method can be stable only if its numerical
domain of dependence contains the true domain of dependendence of
the PDE, at least in the limit as ∆t,∆x→ 0.
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Finite Volume Method Convergence

CFL condition

For a hyperbolic system of equations, we have wave speeds λ1, . . . , λm

with domain of dependence

D(x, t) = {x− λpt | p = 1, . . . ,m}.

Then the CFL condition is

∆x

∆t
≥ max

p
|λp|.

Note: This is necessary but not sufficient for stability.
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Finite Volume Method Numerical flux

Choosing the numerical flux

A naive choice for the numerical flux function might be:

F(Qni−1, Q
n
i ) =

1

2

[
f(Qni−1) + f(Qni )

]
.

����������������������� XXX
XX

XXX
XXX

XXX
XXX

XXX
XXX

. . . but this leads to an unstable scheme.

(shown via Von Neumann analysis)
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Finite Volume Method Numerical flux

Upwind methods

Since information is propagated along characteristics, symmetric
numerical flux functions won’t be effective. We seek to use upwind
methods where information for each characteristic variable is obtained
by looking in the direction from which it should be coming.
The first-order upwind method for the constant-coefficient advection
equation qt + λqx = 0 with λ > 0 is given by

Qn+1
i = Qni − λ

∆t

∆x
(Qni −Qni−1)
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Finite Volume Method Godunov’s Method

Godunov’s Method for Linear Systems

The following REA algorithm was proposed by Godunov (1959):

1. Reconstruct a piecewise polynomial function q̃n(x, tn) from the
cell averages Qni . In the simplest case, q̃n(x, tn) is piecewise
constant on each grid cell:

q̃n(x, tn) = Qni , for all x ∈ Ci.

2. Evolve the hyperbolic equation with this initial data to obtain
q̃n(x, tn+1).

3. Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1

∆x

∫
Ci

q̃n(x, tn+1) dx.
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Finite Volume Method Godunov’s Method

Godunov’s Method for Linear Systems

Note: the Evolve step (2) requires solving the Riemann problem,
provided ∆t is small enough so waves from adjacent cells don’t interact.
Recall that the solution to the Riemann problem for a linear system
can be written as a set of waves:

Qi −Qi−1 =

m∑
p=1

[`p(Qi+1 −Qi)] rp ≡
m∑
p=1

Wp
i−1/2

Marc Kjerland (UIC) FV method for hyperbolic PDEs February 7, 2011 27 / 32



Finite Volume Method Godunov’s Method

Note that after time ∆t the pth wave has moved a distance λp∆t. Then
the effect of this wave on the cell average Q is a change by the amount

−λp ∆t

∆x
Wp
i−1/2.

So, the Average step (3) can be easily computed due to the simple
geometries of the problem.
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Finite Volume Method Godunov’s Method

Wave-propagation Form of Godunov’s Method

Define λ+ = max(λ, 0) and λ− = min(λ, 0). Combining (2) and (3), we
have the update algorithm:

Qn+1
i = Qni −

∆t

∆x

 m∑
p=1

(λp)+Wp
i−1/2 +

m∑
p=1

(λp)−Wp
i+1/2

 .
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Finite Volume Method Godunov’s Method

Godunov’s Method for General Conservation Laws

For the general conservation law

qt + f(q)x = 0,

we use the solution to the Riemann problem to define

Fni−1/2 = f(Qi−1) +

m∑
p=1

(λp)−Wp
i−1/2

or

Fni−1/2 = f(Qi) +

m∑
p=1

(λp)+Wp
i−1/2
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Finite Volume Method Godunov’s Method

Roe’s Method

Define |A| = R|Λ|R−1, where |Λ| = diag(|λp|).
Then we can derive the formula

Fni−1/2 =
1

2
[f(Qi−1) + f(Qi)]−

1

2
|A|(Qi −Qi−1).

Used in nonlinear problems, this is known as Roe’s method.
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Finite Volume Method Godunov’s Method

References

Thanks for listening!

Content was taken liberally from:

Finite-Volume Methods For Hyperbolic Problems
Randall LeVeque, 2002
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