Finite Volume Method for Hyperbolic PDEs

Marc Kjerland

University of Illinois at Chicago

Outline

Hyperbolic PDEs

Conservation laws Linear systems Riemann Problem Boundary Values

Finite Volume Method

Convergence Numerical flux Godunov's Method

1D fluid flow

X

1D fluid flow

Introduce a tracer that moves in the fluid. Let $\rho(x)$ denote the density of the tracer.

1D fluid flow

$$\int_{x_1}^{x_2} q(x,t)dx = \text{mass of tracer between } x_1 \text{ and } x_2.$$

1D fluid flow

$$\int_{x_1}^{x_2} q(x,t) dx = \text{mass of tracer between } x_1 \text{ and } x_2.$$

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) dx = F_1(t) - F_2(t),$$

where F_i is the flux of mass from right to left at x_i .

Conservation law

For general autonomous flux F = f(q), we have

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, \mathrm{d}x = f(q(x_1,t)) - f(q(x_2,t)).$$

For f sufficiently smooth, we have:

$$\frac{d}{dt}\int_{x_1}^{x_2} q(x,t) \,\mathrm{d}x = -\int_{x_1}^{x_2} \frac{\partial}{\partial x} f(q(x,t)) \,\mathrm{d}x,$$

which we can write as

$$\int_{x_1}^{x_2} \left[\frac{\partial}{\partial t} q(x,t) + \frac{\partial}{\partial x} f(q(x,t)) \right] \mathrm{d}x = 0.$$

Conservation law

Differential form of the 1D conservation law:

$$q_t + f(q)_x = 0.$$

Hyperbolic systems

A 1D $\mathit{quasilinear}\xspace$ system

$$q_t + A(q, x, t)q_x = 0$$

is hyperbolic at (q, x, t) if A(q, x, t) is diagonalizable with real eigenvalues.

The 1D nonlinear conservation law

$$q_t + f(q)_x = 0$$

is hyperbolic if the Jacobian matrix $\frac{\partial f}{\partial q}$ is diagonalizable with real eigenvalues for each physically relevant q.

Linear hyperbolic systems

Consider the linear hyperbolic IVP

$$\begin{cases} q_t + Aq_x = 0, \\ q(x,0) = q_0(x) \end{cases}$$

Then we can write $A = R\Lambda R^{-1}$, where $R \in \mathbb{R}^{m \times m}$ is the matrix of eigenvectors and $\Lambda \in \mathbb{R}^{m \times m}$ is the matrix of eigenvalues. Making the substitution q = Rw, we get the decoupled system

$$w_t^p + \lambda^p w_x^p = 0, \quad p = 1 \dots m.$$

The 1D advection equation

$$\begin{cases} w_t + \lambda w_x = 0, \\ w(x, 0) = w_0(x) \end{cases}$$

is easily solved using the method of characteristics:

$$w(x,t) = w_0(x - \lambda t).$$

We can now write

q

$$\begin{aligned} (x,t) &= \sum_{p=1}^{m} w^p(x,t) r^p \\ &= \sum_{p=1}^{m} w_0^p(x-\lambda^p t) r^p \\ &= \sum_{p=1}^{m} [\ell^p q_0(x-\lambda^p t)] r^p \end{aligned}$$

So the solution q(x,t) is a superposition of waves with speeds λ^p .

Domain of dependence and Range of Influence

Fig. 3.2. For a typical hyperbolic system of three equations with $\lambda^1 < 0 < \lambda^2 < \lambda^3$, (a) shows the domain of dependence of the point (*X*, *T*), and (b) shows the range of influence of the point x_0 .

(R. Leveque, 2002)

Riemann Problem

The hyperbolic equation with initial data

$$q_0(x) = \begin{cases} q_\ell & \text{if } x < 0\\ q_r & \text{if } x > 0 \end{cases}$$

is known as the *Riemann problem*.

Riemann Problem

The hyperbolic equation with initial data

$$q_0(x) = \begin{cases} q_\ell & \text{if } x < 0\\ q_r & \text{if } x > 0 \end{cases}$$

is known as the *Riemann problem*.

For the linear constant-coefficient system, the solution is given by:

$$q(x,t) = q_{\ell} + \sum_{p:\lambda^p < x/t} \left[\ell^p(q_r - q_{\ell})\right] r^p$$
$$= q_r - \sum_{p:\lambda^p \ge x/t} \left[\ell^p(q_r - q_{\ell})\right] r^p.$$

Riemann Problem

Solution to Riemann problem using characteristics: $(\lambda^1 < 0 < \lambda^2 < \lambda^3)$

Initial-Boundary Value problems

For problems with bounded domains $a \le x \ge b$, we also need boundary conditions. The signs of the wave speeds dictate how many conditions are required at each boundary. For example, the advection equation

$$q_t + q_x = 0$$

requires only boundary conditons at x = a.

Outline

Hyperbolic PDEs

Conservation laws Linear systems Riemann Problem Boundary Values

Finite Volume Method

Convergence Numerical flux Godunov's Method

Finite Volume Method

We subdivide the spatial domain into grid cells C_i , and in each cell we approximate the average of q at time t_n :

$$Q_i^n \approx \frac{1}{m(C_i)} \int_{C_i} q(x, t_n) \,\mathrm{d}x.$$

At each time step we update these values based on fluxes between cells.

1D Finite Volume Method

In 1D, $C_i = (x_{i-1/2}, x_{i+1/2}).$

Assume uniform grid spacing $\Delta x = x_{i+1/2} - x_{i-1/2}$.

1D conservation law

Recall the autonomous conservation law:

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, \mathrm{d}x = f(q(x_1,t)) - f(q(x_2,t)).$$

Integrating in time from t_n to t_{n+1} and dividing by Δx , we can derive

$$\begin{split} \frac{1}{\Delta x} \int_{C_i} q(x, t_{n+1}) \, \mathrm{d}x &= \frac{1}{\Delta x} \int_{C_i} q(x, t_n) \, \mathrm{d}x \\ &- \frac{1}{\Delta x} \left[\int_{t_n}^{t_{n+1}} f(q(x_{i+1/2}, t)) \, \mathrm{d}t - \int_{t_n}^{t_{n+1}} f(q(x_{i-1/2}, t)) \, \mathrm{d}t \right]. \end{split}$$

Approximation to flux term

Note that we cannot in general evaluate the time integrals exactly. However, it does suggest numerical methods of the form

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right),$$

where

$$F_{i-1/2}^n \approx \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} f(q(x_{i-1/2}, t)) \,\mathrm{d}t.$$

Numerical flux

For a hyperbolic problem, information propagates at a finite speed. So it is reasonable to assume that we can obtain $F_{i-1/2}^n$ using only the values Q_{i-1}^n and Q_i^n :

$$F_{i-1/2}^n = \mathcal{F}(Q_{i-1}^n, Q_i^n)$$

where \mathcal{F} is some *numerical flux function*. Then our numerical method becomes

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[\mathcal{F}(Q_i^n, Q_{i+1}^n) - \mathcal{F}(Q_{i-1}^n, Q_i^n) \right].$$

Necessary conditions for convergence

If we want our numerical solution to converge to the true solution as $\Delta x, \Delta t \to 0$, then

- ▶ The method must be *consistent*, i.e. the local truncation error goes to 0 as $\Delta t \rightarrow 0$
- ▶ The method must be *stable*, i.e. small errors in each time step do not grow too quickly.

Consistency

Suppose we have a numerical method $Q^{n+1} = \mathcal{N}(Q^n)$ and "true" values q^n and q^{n+1} . Then the local truncation error is defined to be:

$$\tau = \frac{\mathcal{N}(q^n) - q^{n+1}}{\Delta t}.$$

The method is consistent if τ vanishes as $\Delta t \to 0$ for all smooth q(x,t) that satisfy the differential equation. This is usually easy to check using Taylor expansions.

CFL condition

A necessary condition for stability is the *Courant-Friedrichs-Levy* condition: A numerical method can be stable only if its numerical domain of dependence contains the true domain of dependendence of the PDE, at least in the limit as $\Delta t, \Delta x \to 0$.

Fig. 4.3. (a) Numerical domain of dependence of a grid point when using a three-point explicit finite difference method, with mesh spacing Δx^a . (b) On a finer grid with mesh spacing $\Delta x^b = \frac{1}{2}\Delta x^a$.

CFL condition

For a hyperbolic system of equations, we have wave speeds $\lambda^1, \ldots, \lambda^m$ with domain of dependence

$$\mathcal{D}(x,t) = \{x - \lambda^p t \mid p = 1, \dots, m\}.$$

Then the CFL condition is

$$\frac{\Delta x}{\Delta t} \ge \max_p |\lambda^p|.$$

Note: This is necessary but not sufficient for stability.

Choosing the numerical flux

A naive choice for the numerical flux function might be:

$$\mathcal{F}(Q_{i-1}^n, Q_i^n) = \frac{1}{2} \left[f(Q_{i-1}^n) + f(Q_i^n) \right].$$

Choosing the numerical flux

A naive choice for the numerical flux function might be:

... but this leads to an unstable scheme.

(shown via Von Neumann analysis)

Upwind methods

Since information is propagated along characteristics, symmetric numerical flux functions won't be effective. We seek to use *upwind* methods where information for each characteristic variable is obtained by looking in the direction from which it should be coming. The *first-order upwind method* for the constant-coefficient advection equation $q_t + \lambda q_x = 0$ with $\lambda > 0$ is given by

$$Q_i^{n+1} = Q_i^n - \lambda \frac{\Delta t}{\Delta x} (Q_i^n - Q_{i-1}^n)$$

Godunov's Method for Linear Systems

The following REA algorithm was proposed by Godunov (1959):

1. **Reconstruct** a piecewise polynomial function $\tilde{q}^n(x, t_n)$ from the cell averages Q_i^n . In the simplest case, $\tilde{q}^n(x, t_n)$ is piecewise constant on each grid cell:

$$\tilde{q}^n(x, t_n) = Q_i^n$$
, for all $x \in C_i$.

- 2. **Evolve** the hyperbolic equation with this initial data to obtain $\tilde{q}^n(x, t_{n+1})$.
- 3. Average this function over each grid cell to obtain new cell averages

$$Q_i^{n+1} = \frac{1}{\Delta x} \int_{C_i} \tilde{q}^n(x, t_{n+1}) \,\mathrm{d}x.$$

Godunov's Method for Linear Systems

Note: the Evolve step (2) requires solving the Riemann problem, provided Δt is small enough so waves from adjacent cells don't interact. Recall that the solution to the Riemann problem for a linear system can be written as a set of waves:

$$Q_i - Q_{i-1} = \sum_{p=1}^m \left[\ell^p (Q_{i+1} - Q_i) \right] r^p \equiv \sum_{p=1}^m \mathcal{W}_{i-1/2}^p$$

Note that after time Δt the *p*th wave has moved a distance $\lambda^p \Delta t$. Then the effect of this wave on the cell average Q is a change by the amount

$$-\lambda^p \frac{\Delta t}{\Delta x} \mathcal{W}^p_{i-1/2}.$$

So, the Average step (3) can be easily computed due to the simple geometries of the problem.

Fig. 4.7. An illustration of the process of Algorithm 4.1 for the case of a linear system of three equations. The Riemann problem is solved at each cell interface, and the wave structure is used to determine the exact solution time Δt later. The wave $W_{i-1/2}^2$, for example, has moved a distance $\lambda^2 \Delta t$ into the cell.

Wave-propagation Form of Godunov's Method

Define $\lambda^+ = \max(\lambda, 0)$ and $\lambda^- = \min(\lambda, 0)$. Combining (2) and (3), we have the update algorithm:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[\sum_{p=1}^m (\lambda^p)^+ \mathcal{W}_{i-1/2}^p + \sum_{p=1}^m (\lambda^p)^- \mathcal{W}_{i+1/2}^p \right].$$

Godunov's Method for General Conservation Laws

For the general conservation law

$$q_t + f(q)_x = 0,$$

we use the solution to the Riemann problem to define

$$F_{i-1/2}^n = f(Q_{i-1}) + \sum_{p=1}^m (\lambda^p)^- \mathcal{W}_{i-1/2}^p$$

or

$$F_{i-1/2}^n = f(Q_i) + \sum_{p=1}^m (\lambda^p)^+ \mathcal{W}_{i-1/2}^p$$

Roe's Method

Define
$$|A| = R|\Lambda|R^{-1}$$
, where $|\Lambda| = \text{diag}(|\lambda^p|)$.
Then we can derive the formula

$$F_{i-1/2}^{n} = \frac{1}{2} \left[f(Q_{i-1}) + f(Q_{i}) \right] - \frac{1}{2} |A| (Q_{i} - Q_{i-1}).$$

Used in nonlinear problems, this is known as Roe's method.

References

Thanks for listening!

Content was taken liberally from:

Finite-Volume Methods For Hyperbolic Problems Randall LeVeque, 2002