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Numerical Methods for PDEs

Preliminaries

We seek to solve the partial differential equation

Pu = f

where u is an unknown function on a domain Ω ⊆ RN , P is a differential
operator, and f is a given function on Ω. Typically u also satisfies some
initial and/or boundary conditions. It is seldom possible to find exact
solutions analytically.
A numerical method will typically find an approximation to u by making a
discretization of the domain or by seeking solutions in a reduced function
space.
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Finite Difference method

Finite differences

The basic idea for the finite difference method is to replace derivatives
with finite differences. Consider u = u(x , t) and let h, k > 0. Then we
could use the following approximations:

∂u

∂x
≈ u(x + h, t)− u(x , t)

h
∂u

∂t
≈ u(x , t + k)− u(x , t)

k

Marc Kjerland (UIC) Numerical Methods for PDEs January 24, 2011 5 / 39



Finite Difference method

Domain discretization

Let us define a regular grid of points (xm, tn) = (mh, nk) for some integers
m and n. In general these points need not be equally spaced. The finite
difference algorithm will generate approximations to u at each grid point.
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Finite Difference method

Notation

We introduce the notation un
m = u(xm, tn). Then we can write:

∂

∂x
un
m ≈

un
m+1 − un

m

h
∂

∂t
un
m ≈

un+1
m − un

m

k
.

These are called forward differences; there are many other possible choices.

Marc Kjerland (UIC) Numerical Methods for PDEs January 24, 2011 7 / 39



Finite Difference method

Example

Consider the one-way wave equation:

ut + aux = 0

with initial condition
u(x , 0) = u0(x).

Here is the forward-time forward-space approximation:

un+1
m − un

m

k
+ a

un
m+1 − un

m

h
= 0,

from which we can derive the following explicit scheme:

un+1
m = (1 + ak

h )un
m − ak

h un
m+1.
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Finite Difference method

Consistency

Will our finite difference scheme actually generate a solution of the PDE?
Consider the one-way wave equation with a = 1:{

ut + ux = 0,

u(x , 0) = u0(x).

The exact solution is u(x , t) = u0(x − t), found using the method of
characteristics. As time increases, initial data is propagated to the right
with speed 1. The forward-time forward-space scheme cannot reproduce
this behavior, so the scheme is inconsistent with the PDE.

A scheme which is consistent with the one-way wave equation for all a is
the forward-time center-space scheme:

un+1
m − un

m

k
+ a

un
m+1 − un

m−1

2h
= 0.
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Finite Difference method

Stability

A poorly-chosen numerical scheme can sometimes result in uncontrolled
(and incorrect) growth of the solution. We say that a finite difference
scheme for a first-order equation is stable if there is an integer J such that
for any positive time T , there is a constant CT such that

‖un‖2
h ≤ CT

J∑
j=0

‖uj‖2
h.

This is typically shown using Von Neumann analyis in Fourier space; there
is often a strong dependence on the relation between h and k .
The forward-time center-space scheme for the one-way wave equation is
unstable.
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Finite Difference method

Implicit schemes

The backward-time center-space scheme is both consistent with the
one-way wave equation and unconditionally stable:

un+1
m − un

m

k
+ a

un+1
m+1 − un+1

m−1

2h
= 0

This is an implicit scheme, since unknown values appear multiple times in
the equation. Implicit schemes often allow for much larger grid spacing
but require significant additional calculations at each step.
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Finite Difference method

Order of accuracy

Consider Poisson’s equation in 2D:

uxx + uyy = f .

The discrete five-point Laplacian approximation is given by:

um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n = h2fm,n
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Finite Difference method

Order of accuracy

The discrete nine-point Laplacian is of higher accuracy: o(h4) vs. o(h2).
However, it requires more information at each step:

1
6 (um+1,n+1 + um+1,n−1 + um−1,n+1 + um−1,n−1)+

+ 2
3 (um+1,n + um−1,n + um,n+1 + um,n−1)− 10

3 um,n =

= h2

12 (fm+1,n + fm−1,n + fm,n+1 + fm,n−1)
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Finite Difference method

Pros and cons of finite difference methods

Advantages:

• Fast

• Easy to code

Disadvantages:

• Hard to generalize in complex geometries
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Finite Volume method

Conservation laws

The finite volume method is used to find numerical solutions to
conservation laws. A conservation law is a PDE written generally in the
form:

∂tq(x , t) + div F(x , t) = f (x , t),

where q is a conserved quantity (i.e. mass, energy), F is a flux
representing a transport mechanism for q, and f is a forcing term. There
is an implicit dependence on an unknown u(x , t)

Marc Kjerland (UIC) Numerical Methods for PDEs January 24, 2011 16 / 39



Finite Volume method

Examples of conservation laws

Linear transport equation:{
∂tu(x , t) + div(vu)(x , t) = 0, t > 0,

u(x , 0) = u0(x).

[q = u(x , t),F = vu(x , t), f = 0]

Stationary diffusion equation:{
−∆u = f , on Ω = (0, 1)× (0, 1)

u = 0, on δΩ

[q = u(x),F = −∇u(x)]
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Finite Volume method

Examples of conservation laws

1D Euler equations:

∂t

 ρ
ρu
E

+ ∂x

 ρu
ρu2 + p

u(E + p)

 = 0.
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Finite Volume method

Intro to the Finite Volume method

Let Ω ⊆ Rd be our spatial domain, and let T be a polygonal mesh on Ω.
Consider a control volume K ∈ T . Integrating over K , we have by the
divergence theorem:∫

K
∂tq(x , t)dx +

∫
∂K

F(x , t) · nK (x)dσ =

∫
K

f (x , t)dx .

Let NK ⊆ T be the set of neighbors of K . Then∫
K
∂tq(x , t)dx +

∑
L∈NK

∫
K∩L

F(x , t) · nK (x)dσ =

∫
K

f (x , t)dx .
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Finite Volume method

Discretization and approximation

Using an explicit forward-time scheme, we can write∫
K

qn+1(x)− qn(x)

k
dx +

∑
L∈NK

Φn
K ,L =

∫
K

f (x , tn)dx ,

where Φn
K ,L is an approximation to the flux from K to L.
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Finite Volume method

The numerical flux

In a finite volume scheme, we seek an appropriate time discretization as
well as numerical flux terms F n

K ,L which are

• Conservative, i.e. F n
K ,L = −F n

L,K .

• Consistent with the PDE.
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Finite Volume method

Pros and cons of finite volume methods

Advantages:

• Robust and cheap for conservation laws

• Can handle complex geometries

Disadvantages:

• High precision difficult (see: Discontinuous Galerkin)
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Spectral methods

Intro to spectral methods

Spectral methods are global methods. We seek to approximate u with a
linear combination of smooth basis functions:

u(x) ≈
N∑

k=0

akφk(x).

The basis functions φk are, for example, trigonometric functions or
Chebyshev polynomials.
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Spectral methods

Basis functions

The choice of basis functions should meet three requirements:

1 Approximation
∑N

k=0 akφk(x) must converge rapidly.

2 Given ak , it should be easy to determine bk such that
d
dx

(∑N
k=0 akφk(x)

)
=
∑N

k=0 bkφk(x).

3 It should be fast to convert between coefficients ak , for k = 0, . . . ,N,
and values v(xi ) at some set of nodes xi , for i = 0, . . . ,N.
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Spectral methods

Basis functions

Periodic problems: Trigonometric functions satisfy (1) and (2)
immediately. Thanks to the FFT (1965), they also satisfy (3).

Non-periodic problems: Legendre and Chebyshev polynomials are the
preferred choice.
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Spectral methods

Determining coefficients

To determine the expansion coefficients, we consider the residual R(x , t)
when the expansion is substituted in the governing equation. There are
three main techniques:

• Tau. Select ak to satisfy BCs, make the residual orthogonal to as
many basis functions as possible.

• Galerkin. Combine basis functions into a new set in which all
functions satisfy the BCs, then make residual orthogonal to as many
of the new basis functions as possible.

• Collocation (PS). Select ak to satisfy BCs, make residual zero at as
many spatial points as possible.
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Spectral methods

Pros and cons of spectral methods

Advantages:

• Error decays rapidly with N

• Small dissipative and dispersive errors

• Can handle coarse grids

Disadvantages:

• Complex geometries

• Shock handling
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Finite Element method

Intro to the finite element method

We seek to solve a PDE of the form

Pu = f

by finding an approximation ũ ∈ V, for some function space V. We wish to
minimize the residual R(x) :

Pũ − f = R(x).
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Finite Element method

Choosing a basis
We choose V usually to be the set of continuous or C 1 functions which are
piecewise polynomial of degree p.

Let T be a mesh. Then we choose basis functions φk(x) ∈ V with
compact support over grid cells.

So: ũ(x) =
N∑

k=0

akφk(x).
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Finite Element method

Weak formulation

Instead of solving the PDE directly, we solve instead an integral or weak
formulation: ∫

Ω
(Pu − f )vjdx = 0,

where vj are test functions.

• vj = ∂R
∂aj

: Least-squares method.

• vj = 1Ωj
: Finite Volume method.

• vj = φj : Galerkin’s method.
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Finite Element method

Pros and cons of finite element methods

Advantages:

• Can be very accurate

• Handles complex geometries

Disadvantages:

• ???
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Other considerations

Boundary Conditions

Boundary Conditions!!
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Other considerations

Grids

Choice of grid:

Adaptive mesh refinement:
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Other considerations

Computational concerns

• Accuracy vs. speed

• Parallelizability
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Other considerations

Other topics of interest

• Continuous Galerkin methods

• Discontinuous Galerkin methods

• Level set methods (Stan Osher, et al)

• Spectral/hp element methods
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Other considerations
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