1. True or false: Let $f(x)=|x|$. There is some number c in $[-1 / 2,2]$ such that

$$
f^{\prime}(c)=\frac{f(2)-f(-1 / 2)}{2-(-1 / 2))} .
$$

Justify your answer.
2. Approximate the value of $83^{1 / 4}$ by using a linear approximation.
3. Use L'Hôpital's rule to compute the limit.
(a) $\lim _{x \rightarrow \infty} \frac{x^{3}+3 x}{2 x+1}$
(b) $\lim _{x \rightarrow 1} \frac{\sin (x)}{x}$
(c) $\lim _{x \rightarrow \pi / 2} \frac{2 \tan (x)}{\sec ^{2}(x)}$
(d) $\lim _{x \rightarrow 0} x \csc (x)$
(e) $\lim _{x \rightarrow \infty}\left(1+\frac{3}{x}\right)^{x}$
4. Let $f(x)=e^{0.5 x}$ and $g(x)=x^{2014}$. Compute:

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} .
$$

Which of these functions grows faster?

