1. Acceleration due to gravity is a constant $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(a) If you jump out of a window, find your velocity $v(t)$ at time $t$.
(b) Find your position $s(t)$ at time $t$.
(c) Suppose the window is 30 meters high and you jump up with a velocity of $2 \mathrm{~m} / \mathrm{s}$. Find the function $s(t)$ that describes your position at time $t$.
2. Find an antiderivative for the given function.
(a) $4 x^{3}+2 x+7$
(b) $4 x^{-3}+2 x+1$
(c) $2 x^{-1}$
(d) $e^{\pi^{e}}$
(e) $\frac{1}{\sqrt{1-x^{2}}}$
(f) $e^{2 x}$
(g) $x e^{x}$
(h) $\cos (x) \sin (x)$
3. Solve the differential equation

$$
\frac{d y}{d x}+\sin (x)-x=0
$$

4. In this problem we solve the differential equation

$$
\frac{d y}{d x}=k(C-y) .
$$

(a) Pretend " $d y$ " and " $d x$ " are numbers that you may manipulate. Solve so that $d y$ and $y$ are on the same side of the equation and $d x$ on the other side.
(b) Find antiderivatives for each side (finding an antiderivative for $f(y) d y$ means find a function $F(y)$ whose derivative is $f(y)$. Do the same for the $d x$ side).
(c) Solve the resulting equation for $y$.
(d) Suppose $y$ is the temperature of a room and $x$ is time. Interpret the differential equation and its solution.

