1. Construct a single function $f(x)$ with all of the following properties:
(i) $f(x) \geq 0$ for $x \geq 0$.
(ii) $g(x)=\int_{0}^{x} f(t) d t$ is concave up for $x \geq 0$
(iii) $f(x)$ is concave down.
(Start by drawing such a function. Then try to write a formula)
2. Compute the definite integrals:
(a) $\int_{-2}^{2} x^{4}-6 d x$
(b) $\int_{1}^{e^{3}} \frac{1}{x} d x$
(c) $\int_{-\pi}^{2 \pi}|\sin (x)| d x$
3. Use substitution to calculate the following integrals:
(a) $\int_{1}^{2} \frac{x^{3}}{\left(1+x^{4}\right)^{1 / 3}} d x$
(b) $\int_{0}^{\sqrt{\pi}} x \cos \left(x^{2}\right) d x$
(c) $\int \cos ^{3}(x) \sin (x) d x$.
4. Let

$$
R(t)=\int_{1}^{t^{2}} \ln \left(\arctan \left(4 x^{3}-6 x\right)\right) \cot (x) d x
$$

Find $R^{\prime}(t)$.

