1. Suppose $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. State whether the following are true or false:
(a) $\lim _{x \rightarrow a}[f(x)+g(x)]=L+M$.
(b) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=L \cdot M$.
(c) $\lim _{x \rightarrow a}[f(x) / g(x)]=L / M$.
2. Compute each of the following limits:
(a) $\lim _{x \rightarrow 0} \frac{x^{2}-x}{x}$
(b) $\lim _{x \rightarrow 3} \frac{x^{2}-7 x+12}{x-3}$
(c) $\lim _{x \rightarrow 9} \frac{x-9}{3-\sqrt{x}}$
3. Evaluate $\lim _{x \rightarrow 4^{+}} \sqrt{x-4}$. What's the deal with $\lim _{x \rightarrow 4^{-}} \sqrt{x-4}$?
4. Let $f(x)=\tan (x)$. Remember in calculus we use radians, not degrees.
(a) Graph $f(x)$ on the interval $[-4 \pi, 4 \pi]$.
(b) What is $\lim _{x \rightarrow \pi} f(x)$?
(c) Compute $\lim _{x \rightarrow \pi} \sin (x)$ and $\lim _{x \rightarrow \pi} \cos (x)$ and use this to check your answer to (b).
(d) What is $\lim _{x \rightarrow \pi / 2} f(x)$?
(e) Compute $\lim _{x \rightarrow \pi / 2} \sin (x)$ and $\lim _{x \rightarrow \pi / 2} \cos (x)$ and use this to explain what happened in (d).
