1. Let

$$
f(x)= \begin{cases}1 & x \text { is rational } \\ 0 & x \text { is irrational }\end{cases}
$$

For which a does $\lim _{x \rightarrow a}$ exist?
2. Compute each of the following limits:
(a) $\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x^{3}+8}$
(b) $\lim _{x \rightarrow 4} \frac{3-\sqrt{x+5}}{x-4}$
(c) $\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4}$
3. Let $g(t)=t^{2} \ln \left(t^{2}\right)$.
(a) What is the domain of g ?
(b) Sketch a graph of g.
(c) Using your graph, demonstrate that $-|t| \leq t^{2} \ln \left(t^{2}\right) \leq|t|$ for t in $[-1,1]$.
(d) Evaluate $\lim _{t \rightarrow 0} g(t)$.
4.
(a) Compute $\lim _{x \rightarrow 1} 9 x^{2}+3 x+7$.
(b) Compute $\lim _{t \rightarrow 3} t^{2}+t+7$. Say something intelligent about your answers to (a) and (b).
(c) Compute $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$. You may reference your textbook if you like.
(d) Carefully contemplate your answers to (a)-(c), then compute $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{3 x}$.

