1. Determine whether each of the following statements is true or false.
(a) If $f(x)$ is continuous at a then it is differentiable at a.
(b) If $f(x)$ is differentiable at a then $\lim _{x \rightarrow a^{+}} f(x)$ exists.
(c) If $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ exists then $\lim _{x \rightarrow a} f(x)=f(a)$.
2. Let $f(x)=\frac{1}{2 x^{3}-6 x}$.
(a) Compute $f(2)$ and $f^{\prime}(2)$.
(b) Write the equation of the line tangent to $f(x)$ at 2 .
(c) Draw the graph of $f(x)$ and the tangent line you found in (b).
3. Let $g(t)=\frac{\left|t^{2}-4\right|}{t-5}$.
(a) What is the domain of g ?
(b) Where is g differentiable? Where is g continuous?
(c) Find $g^{\prime}(t)$ wherever it exists.
(d) Notice from your answers to (b) (if you got it right) that there is a point t_{0} where g is continuous but not differentiable. Compute:

$$
\lim _{t \rightarrow t_{0}^{+}} \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h} \quad \lim _{t \rightarrow t_{0}^{-}} \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}
$$

