3. Let $g(t)=\frac{\left|t^{2}-4\right|}{t-5}$.
(a) What is the domain of g ?
(b) Where is g differentiable? Where is g continuous?
(c) Find $g^{\prime}(t)$ wherever it exists.
(d) Notice from your answers to (b) (if you got it right) that there is a point t_{0} where g is continuous but not differentiable. Compute:

$$
\lim _{h \rightarrow 0^{+}} \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h} \quad \lim _{h \rightarrow 0^{-}} \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}
$$

(There was a typo in the original version of this problem that I gave you in part (d) - I had you compute a limit that wasn't very interesting)

Solution:

(a) The domain of g is the set of values t is allowed to take. The only thing t cannot be is 5 . Thus the domain is $(-\infty, 5) \cup(5, \infty)$ (you may also write $\{x \in \mathbb{R}: x \neq 5\}$ or even $\mathbb{R} \backslash\{5\}$).
(b) The function g is continous everywhere on its domain; it is not continuous at 5 . Thus g is continuous on $(-\infty, 5) \cup(5, \infty)$. Now g is differentiable everywhere except $t= \pm 2$. To see this, it might help to graph g. Alternatively, write:

$$
g(t)= \begin{cases}\frac{t^{2}-4}{t-5} & |t| \geq 2 \\ \frac{4-t^{2}}{t-5} & |t|<2\end{cases}
$$

We will compute in part (d) what the derivative of g is near ± 2 and see that it is not differentiable there.
(c) Using our formula from above, so long as $t \neq \pm 2$ we can use our derivative rules to compute $g^{\prime}(t)$. We get:

$$
g^{\prime}(t)= \begin{cases}\frac{(t-5) 2 t-\left(t^{2}-4\right)}{(t-5)^{2}} & |t|>2 \\ \frac{-(t-5) 2 t-\left(t^{2}-4\right)}{(t-5)^{2}} & |t|<2\end{cases}
$$

(d) Now we can compute the "left-" and "right-derivative" at ± 2. I'll do the case $t_{0}=2$, and you can try $t_{0}=-2$ for yourself.

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{f(2+h)-f(2)}{h} & =\frac{(2-5)(2 \cdot 2)-\left(2^{2}-4\right)}{(2-5)^{2}} \\
& =\frac{-12}{9} \\
\lim _{h \rightarrow 0^{-}} \frac{f(2+h)-f(2)}{h} & =\frac{-(2-5)(2 \cdot 2)-\left(2^{2}-4\right)}{(2-5)^{2}} \\
& =\frac{12}{9}
\end{aligned}
$$

Notably, these limits are different!

