1. If $h = f \circ g$, with f and g differentiable functions, then h'(2) equals

- (a) $f'(2) \circ g'(2)$
- (b) f'(2)g'(2)
- (c) f'(g(2))g'(2)
- (d) f'(g(x))g'(2)

2. Compute the derivative:

(a) $\sqrt{x^3 - 2x + 1}$ (b) $\frac{\sin^5(-x)}{x + 2}$ (c) $(-x^2 - e^{e^{e^{\pi}}} + 1)^{10}$

3. Let

$$f(x) = \begin{cases} e^{-1/x^2} & x \neq 0\\ 0 & x = 0 \end{cases}$$

- (a) Compute f'(x) for $x \neq 0$.
- (b) Compute f'(0) (this is hard, you will need to use limits).

4.

- (a) Write two functions f(x) and g(x) such that $(f \circ g)'(x) = f'(g(x))$.
- (b) Write two functions f(x) and g(x) such that $(f \circ g')(x) = g'(f(x))f'(x)$.