1. Let

$$
y=\frac{x^{4}}{4}-\frac{7 x^{3}}{3}+\frac{15 x^{2}}{2}-9 x
$$

(a) Find $d y / d x$. (b) Find and classify all critical points. (c) Sketch the graph.
2. Let $f(x)=\sin (x)$. Find and classify all critical points of $f(x)$ for x in $[0,2 \pi]$.
3. True or false. Justify your answer.
(a) The function $z(x)=\sqrt{x}$ has a local maximum on $[0, \infty)$. What about a local minimum?
(b) If a function is continuous on a closed interval, then it has an absolute maximum on that interval.
(c) Let $f(x)$ be a function such that $f^{\prime}(2)=0$. Then $f(x)$ has a local maximum or a local minimum at $x=2$.
4. Let $f(x)$ be a differentiable function.
(a) Suppose $f(x)$ has a local maximum at $x=c$. What is the sign of $f(x)-f(c)$ when x is near c and $x>c$?
(b) Consider the limit

$$
\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}
$$

and use it to show that $f^{\prime}(c) \leq 0$.
(c) Repeat parts (a) and (b) assuming $x<c$ (use the limit from the left) and conclude that $f^{\prime}(c) \geq 0$.
(d) Prove that $f^{\prime}(c)=0$.

