1. Let $y=\tan ^{-1}(x)$. Use implicit differentiation to find $d y / d x$.
2. Find and classify all critical points of $f(x)=x / \ln (x)$.
3. Find the derivative:
(a) $\sin (x)^{x}$
(b) $\log _{7}\left(x^{2}+1\right)$
(c) $\left(3 x^{2}+4 x\right)^{18}$
(d) $\cos ^{-1}(\sqrt{x})$
4. Let $f(x)=e^{2 x-1}$. Find $\left(f^{-1}\right)^{\prime}(1)$.
5. Let

$$
f(x)=\frac{x^{3}}{3}+x^{2}-3 x+1
$$

(a) Find and classify all critical points. (b) On what intervals is $f(x)$ increasing? (c) On what interval is $f(x)$ decreasing?
6. A joyous calculus student throws her calculus textbook into the air in a fit of exuberance. She is standing on the roof of BSB, which is 50 feet in the air. The height of the book at time t is given by

$$
h(t)=-15 t^{2}+25 t+50 .
$$

(a) Find the velocity of the book at t seconds. (b) When is the book at its highest point? (c) When does the book hit the ground?
7. Consider the function $f(x)=-x^{4}+2 x^{2}-3$. Does it have an absolute maximum? Absolute minimum?
8. Draw the graph of a function satisfying ALL of these properties: (i) $f(0)=0$. (ii) $f^{\prime}(0)=1$. (iii) $f^{\prime}(2)=0$. (iv) $x=4$ is an absolute maximum.
9. A differentiable function $f(x)$ satisfies $f(0)=0, f(\pi)=3, f^{\prime}(\pi)=2, f^{\prime}(0)=4$. Find the equation of the line tangent to $f(\sin (x))$ at the point $x=\pi$.

