1. Let $y=\tan ^{-1}(x)$. Use implicit differentiation to find $d y / d x$.

Solution: This one wasn't worded very carefully. Sorry. I wanted you to prove that the derivative of $\tan ^{-1}$ is $1 /\left(1+x^{2}\right)$. Here's how:

$$
\begin{aligned}
y & =\tan ^{-1} x \\
\tan y & =x \\
\sec ^{2} y \cdot y^{\prime} & =1 \\
y^{\prime} & =\frac{1}{\sec ^{2} y} .
\end{aligned}
$$

At this point you need to show that $\sec ^{2} y=1+x^{2}$. There are a couple ways to do this. You can draw a triangle as we did in discussion. The other way is to use some trig identities. For example, $\sec ^{2} y=1+\tan ^{2} y$ and in this problem $\tan y=x$.
2. Find and classify all critical points of $f(x)=x / \ln (x)$.

Solution: How do we find critical points? Critical points occur when the derivative doesn't exist or when it's zero. Let's calculate:

$$
f^{\prime}(x)=\frac{\ln (x)-x \frac{1}{x}}{\ln (x)^{2}}=\frac{\ln (x)-1}{\ln (x)^{2}}
$$

This is 0 precisely when $\ln (x)=1$ (set the numerator to 0). When is $\ln (x)=0$? When $x=e$. Thus $x=1 e$ is a critical point of $f(x)$. The other critical points are when the derivative doesn't exist. This happens at $x=1$ (then the denominator is 0). To classify $x=e$, we could do a sign diagram or compute the second derivative. I'll do the latter:

$$
f^{\prime \prime}(x)=\frac{2-\ln (x)}{x \log ^{3}(x)} .
$$

When $x=e$ the numerator is 1 and the denominator is positive. Thus $f^{\prime \prime}(e)>0$, so e is a local minimum.
3. Find the derivative:
(a) $\sin (x)^{x}$
(b) $\log _{7}\left(x^{2}+1\right)$
(c) $\left(3 x^{2}+4 x\right)^{18}$
(d) $\cos ^{-1}(\sqrt{x})$

Solution:
(a) The trick to remember is $\sin (x)^{x}=e^{x \ln (\sin (x)}$. The derivative of this (using the chain and product rules) is

$$
e^{x \ln (\sin (x))} \cdot\left(\ln (\sin (x))+\frac{x \cos (x)}{\sin (x)}\right)
$$

(a) This is the chain rule and the log derivative rule. Here's the answer:

$$
\frac{1}{\ln (7)\left(x^{2}+1\right)} \cdot 2 x
$$

(a) Chain rule, baby:

$$
18\left(3 x^{2}+4 x\right)^{17} \cdot(6 x+4)
$$

(a) Ditto:

$$
-\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2} x^{-3 / 2} .
$$

4. Let $f(x)=e^{2 x-1}$. Find $\left(f^{-1}\right)^{\prime}(1)$.

Solution: We'll use the formula

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} .
$$

We need two pieces of information: $f^{\prime}(x)$ and $f^{-1}(1)$. By inspection or by taking logs, we see that $f(1 / 2)=1$, so $f^{-1}(1)=1 / 2$. Further,

$$
f^{\prime}(x)=e^{2 x-1} \cdot 2 .
$$

Notice $f^{\prime}(1 / 2)=1$. Now we can use the formula:

$$
\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(1 / 2)}=\frac{1}{2}
$$

5. Let

$$
f(x)=\frac{x^{3}}{3}+x^{2}-3 x+1
$$

(a) Find and classify all critical points. (b) On what intervals is $f(x)$ increasing? (c) On what interval is $f(x)$ decreasing?

Solution:
(a) Critical points occur when the derivative is zero:

$$
f^{\prime}(x)=x^{2}+2 x-3
$$

We can find the roots of this easily: $f^{\prime}(x)=(x+3)(x-1)$. So f has critical points at -3 and 1. Let's classify with the second derivative test:

$$
\begin{aligned}
f^{\prime \prime}(x) & =2 x+2 \\
f^{\prime \prime}(-3) & =-4 \\
f^{\prime \prime}(1) & =4
\end{aligned}
$$

Since $f^{\prime \prime}(-3)<0$ it's a local maximum. Since $f^{\prime \prime}(1)>0$ it's a local minimum.
(a) Remember f increases when its derivative is positive. We can check between the zeroes of the derivative to figure out what f is doing. For example, when $x=-4$ we have $f^{\prime}(-4)=5>0$ so $f(x)$ is increasing for ALL x in $(\infty,-3)$. Similarly, f is decreasing on $(-3,1)$ and increasing again on $(1, \infty)$.
(a) As I said above, f decreases on $(-3,1)$.
6. A joyous calculus student throws her calculus textbook into the air in a fit of exuberance. She is standing on the roof of BSB, which is 50 feet in the air. The height of the book at time t is given by

$$
h(t)=-15 t^{2}+25 t+50 .
$$

(a) Find the velocity of the book at t seconds. (b) When is the book at its highest point? (c) When does the book hit the ground?

Solution:
(a) Velocity is defined as the derivative of distance, so we take derivatives:

$$
v(t)=h^{\prime}(t)=-30 t+25 .
$$

(a) The book hits its highest point at an absolute maximum! We know how to find these: find all local maxima, and compare those with the limits as $x \rightarrow \pm \infty$. Well,

$$
0=-30 t+25 \Rightarrow t=25 / 30=5 / 6
$$

You can check (use whatever method you like) that this is a local maximum. Further, $\lim _{t \rightarrow \pm \infty} h(t)=-\infty$ so $t=5 / 6$ is an absolute maximum.
(a) This is just algebra. The book hits the ground when $h(t)=0$. This has two roots, $t=$ $\frac{1}{6} \cdot(5 \pm \sqrt{145})$. Only one of these makes sense physically. You pick.
7. Consider the function $f(x)=-x^{4}+2 x^{2}-3$. Does it have an absolute maximum? Absolute minimum?

Solution: Like in 6 (b) we have to find local maxima. Take derivative:

$$
f^{\prime}(x)=-4 x^{3}+4 x .
$$

This has roots $x=-1,0,1$. You can check on your own that -1 and 1 are local maxima, while $x=0$ is a local minimum. Notice that $f(1)=f(-1)=-2$. If f is to have an absolute maximum, the limits as $x \rightarrow \infty$ have to be less than -2 . Indeed, $\lim _{x \rightarrow \pm \infty} f(x)=-\infty$. Thus -2 is the absolute maximum of $f(x)$ and is attained when $x= \pm 1$.
8. Draw the graph of a function satisfying ALL of these properties: (i) $f(0)=0$. (ii) $f^{\prime}(0)=1$. (iii) $f^{\prime}(2)=0$. (iv) $x=4$ is an absolute maximum.

Solution: I don't know how to TeX graphs! You're on your own.
9. A differentiable function $f(x)$ satisfies $f(0)=0, f(\pi)=3, f^{\prime}(\pi)=2, f^{\prime}(0)=4$. Find the equation of the line tangent to $f(\sin (x))$ at the point $x=\pi$.

Solution: We need to know a few things: the coordinates of the point $(\pi, f(\sin (\pi))$ and the derivative of $f(\sin (x))$ at that point. Behold:

$$
f(\sin (\pi))=f(0)=0 \quad\left(f(\sin (x))^{\prime}=f^{\prime}(\sin (x)) \cdot \cos (x)\right.
$$

Thus at $x=\pi$, the derivative is $f^{\prime}(0) \cdot 1=f^{\prime}(0)=4$. We have the equation:

$$
y=4(x-\pi)
$$

