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❖Definition. A hypergraph H is an ordered pair  
(V, E) where V is a set of vertices and E is a 
set of hyperedges such that E    P(V).

❖Definition. The incidence matrix of a 
hypergraph is a (0,1) –matrix which has a row 
for each vertex and a column for each 
hyperedge, and (v, E)=1 if and only if vertex v
is incident upon hyperedge E.
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❖Definition. The hypergraph H is called k-
uniform if the size of every hyperedge is k.

❖Definition. The hypergraph H is called m-
regular if the degree of every vertex is m.



A 3-uniform 3-regular hypergraph



❖Definition. Let H be a hypergraph with the 
incidence matrix N. H admits zero-sum flow if 
there exists a nowhere-zero vector u in the 
null space of N.

❖Definition. The hypergraph H admits a zero-
sum k-flow if the enteries of u are in the set      
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▪ Theorem. For every hypergraph H, there 
exists a 3-regular 3-uniform hypergraph H'

such that H' has a zero-sum flow if and only if 
H has a zero-sum flow. 



❑Lemma 1. For every hypergraph H1 there 
exists a hypergraph H2 such that:

i. The size of hyperedges of H2 do not exceed 
3.

ii. The hypergraph H1 has a zero-sum flow if 
and only if H2 has a zero-sum flow.



• Example for the case |E|=4



❑Lemma 2. For hypergraph H2 (defined in the 
previous lemma) there exists a hypergraph H3

such that:

i. The hypergraph H3 is 3-uniform.

ii. The hypergraph H3 has a zero-sum flow if 
and only if H2 has a zero-sum flow.



• Example for the case |E|=2



❑Lemma 3. For the hypergraph H3 (defined in 
the previous lemma) and k ≥ 3, there exists a 
hypergraph H4 such that:

i. The hypergraph H4 is k-uniform.

ii. The hypergraph H4 has a zero-sum flow if 
and only if H3 has a zero-sum flow.



• Example for the case k=4



❑Lemma 4. For the hypergraph H4 (defined in 
the previous lemma) and integers k ≥ m ≥ 3, 
there exists a hypergraph H5 such that:

i. The hypergraph H5 is k-uniform.

ii. The degree of each vertex of H5 is divisable
by m.

iii. The hypergraph H5 has a zero-sum flow if 
and only if H4 has a zero-sum flow.



• Example for the case k=4, m=3, d(v)=5



❑Lemma 5. For the hypergraph H5 (defined in 
the previous lemma) and integers k ≥ m ≥ 3, 
there exists a hypergraph H6 such that:

i. The hypergraph H6 is k-uniform.

ii. The hypergraph H6 is m-regular.

iii. The hypergraph H6 has a zero-sum flow if 
and only if H5 has a zero-sum flow.



• Example for the case m=6, k=8 and d(v)=12



❑Lemma 6. The previous lemma holds in the 
case m > k ≥ 3.



• Example for the case k=3, m=5



▪ Theorem. For every hypergraph H, and two 
integers k , m ≥ 3, there exists a k-regular m-
uniform hypergraph H' such that:

The hypergraph H has a zero-sum flow, if and 
only if H' has a zero-sum flow.

• Furthermore, if H' has a zero-sum n-flow, then 
H has a zero-sum n-flow as well.



• For every positive integer n, there exists a 3-
uniform 3-regular hypergraph which has a 
zero-sum flow, but has no zero-sum n-flow.
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