Paschke Categories, K-homology and Riemann-Roch Theorem

Khashayar Sartipi

University of Illinois at Chicago

ksarti2@uic.edu

July 23rd 2018

Table of Contents

- Definitions
- Results

2 Riemann-Roch Map

- The Dolbeault Complex
- Conclusion

Definitions Results

C^* -Categories

A C^* -category is a category enriched in the category of Banach spaces with a *-operation on the morphisms. For example:

- Category \mathfrak{B} of Hilbert spaces H where morphisms are bounded operators $\mathfrak{B}(H^1, H^2)$ between them.
- Category $\mathfrak{B}/\mathfrak{K}$ of Hilbert spaces H where morphisms are bounded operators modulo compact operators $\mathfrak{B}(H^1, H^2)/\mathfrak{K}(H^1, H^2)$ between them.
- For a C^* -algebra A, and a C^* -category \mathfrak{A} , the category $\mathfrak{R}ep_{\mathfrak{A}}(A)$ of representations $\rho: A \to \mathfrak{A}(H)$, where H is an object in \mathfrak{A} , and morphisms from $\rho^1: A \to \mathfrak{A}(H^1)$ to $\rho^2: A \to \mathfrak{A}(H^2)$ are $\mathfrak{A}(H^1, H^2)$.

(日)

Definitions Results

C^* -Categories

A C^* -category is a category enriched in the category of Banach spaces with a *-operation on the morphisms. For example:

- Category \mathfrak{B} of Hilbert spaces H where morphisms are bounded operators $\mathfrak{B}(H^1, H^2)$ between them.
- Category $\mathfrak{B}/\mathfrak{K}$ of Hilbert spaces H where morphisms are bounded operators modulo compact operators $\mathfrak{B}(H^1, H^2)/\mathfrak{K}(H^1, H^2)$ between them.
- For a C^* -algebra A, and a C^* -category \mathfrak{A} , the category $\mathfrak{R}ep_{\mathfrak{A}}(A)$ of representations $\rho: A \to \mathfrak{A}(H)$, where H is an object in \mathfrak{A} , and morphisms from $\rho^1: A \to \mathfrak{A}(H^1)$ to $\rho^2: A \to \mathfrak{A}(H^2)$ are $\mathfrak{A}(H^1, H^2)$.

< ロ > < 同 > < 三 > < 三 >

A C^* -category is a category enriched in the category of Banach spaces with a *-operation on the morphisms. For example:

- Category \mathfrak{B} of Hilbert spaces H where morphisms are bounded operators $\mathfrak{B}(H^1, H^2)$ between them.
- Category $\mathfrak{B}/\mathfrak{K}$ of Hilbert spaces H where morphisms are bounded operators modulo compact operators $\mathfrak{B}(H^1, H^2)/\mathfrak{K}(H^1, H^2)$ between them.
- For a C^* -algebra A, and a C^* -category \mathfrak{A} , the category $\mathfrak{R}ep_{\mathfrak{A}}(A)$ of representations $\rho: A \to \mathfrak{A}(H)$, where H is an object in \mathfrak{A} , and morphisms from $\rho^1: A \to \mathfrak{A}(H^1)$ to $\rho^2: A \to \mathfrak{A}(H^2)$ are $\mathfrak{A}(H^1, H^2)$.

A C^* -category is a category enriched in the category of Banach spaces with a *-operation on the morphisms. For example:

- Category \mathfrak{B} of Hilbert spaces H where morphisms are bounded operators $\mathfrak{B}(H^1, H^2)$ between them.
- Category $\mathfrak{B}/\mathfrak{K}$ of Hilbert spaces H where morphisms are bounded operators modulo compact operators $\mathfrak{B}(H^1, H^2)/\mathfrak{K}(H^1, H^2)$ between them.
- For a C^* -algebra A, and a C^* -category \mathfrak{A} , the category $\mathfrak{R}ep_{\mathfrak{A}}(A)$ of representations $\rho: A \to \mathfrak{A}(H)$, where H is an object in \mathfrak{A} , and morphisms from $\rho^1: A \to \mathfrak{A}(H^1)$ to $\rho^2: A \to \mathfrak{A}(H^2)$ are $\mathfrak{A}(H^1, H^2)$.

• □ ▶ • □ ▶ • □ ▶

Definition of Paschke Categories

Let A be a C^* -algebra, and let $\rho^1 : A \to \mathfrak{B}(H^1)$ and $\rho^2 : A \to \mathfrak{B}(H^2)$ be two representations. Then a bounded operator $T : H^1 \to H^2$ is called **pseudo-local** if for each $a \in A$, $\rho^2(a)T - T\rho^1(a)$ is compact. It is called **locally compact** if for each $a \in A$, both $\rho^2(a)T$ and $Tr^1(a)$ are compact

 $T\rho^1(a)$ are compact.

Definition

Let \mathfrak{D} be the category of representations of A with pseudo-local operators between them and \mathfrak{C} be the ideal subcategory of representations of A with locally compact operators between them. Then their quotient category $\mathfrak{D}/\mathfrak{C}$ is called the Paschke category.

< ロ > < 同 > < 三 > < 三

Definition of Paschke Categories

Let A be a C^* -algebra, and let $\rho^1 : A \to \mathfrak{B}(H^1)$ and $\rho^2 : A \to \mathfrak{B}(H^2)$ be two representations. Then a bounded operator $T : H^1 \to H^2$ is called **pseudo-local** if for each $a \in A$, $\rho^2(a)T - T\rho^1(a)$ is compact. It is called **locally compact** if for each $a \in A$, both $\rho^2(a)T$ and $T\rho^1(a)$ are compact.

Definition

Let \mathfrak{D} be the category of representations of A with pseudo-local operators between them and \mathfrak{C} be the ideal subcategory of representations of A with locally compact operators between them. Then their quotient category $\mathfrak{D}/\mathfrak{C}$ is called the Paschke category.

< ロ > < 同 > < 三 > < 三 >

Exact Structure on Paschke Categories

Define an exact structure on the Paschke category $(\mathfrak{D}/\mathfrak{C})_A$ by saying that a complex

$$\dots \xrightarrow{T^{i-1}} (\rho^i, H^i) \xrightarrow{T^i} (\rho^{i+1}, H^{i+1}) \xrightarrow{T^{i+1}} (\rho^{i+2}, H^{i+2}) \xrightarrow{T^{i+2}} \dots$$

is **exact** if there is a contracting homotopy.

Let $f: A \to B$ be a map of C^* -algebras. Then by precomposing a representation $\rho: B \to \mathfrak{B}(H)$ by f, we obtain an exact pull-back functor $f^*: (\mathfrak{D}/\mathfrak{C})_B \to (\mathfrak{D}/\mathfrak{C})_A$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Exact Structure on Paschke Categories

Define an exact structure on the Paschke category $(\mathfrak{D}/\mathfrak{C})_A$ by saying that a complex

$$\dots \xrightarrow{T^{i-1}} (\rho^i, H^i) \xrightarrow{T^i} (\rho^{i+1}, H^{i+1}) \xrightarrow{T^{i+1}} (\rho^{i+2}, H^{i+2}) \xrightarrow{T^{i+2}} \dots$$

is **exact** if there is a contracting homotopy.

Let $f: A \to B$ be a map of C^* -algebras. Then by precomposing a representation $\rho: B \to \mathfrak{B}(H)$ by f, we obtain an exact pull-back functor $f^*: (\mathfrak{D}/\mathfrak{C})_B \to (\mathfrak{D}/\mathfrak{C})_A$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

K-Theory of Paschke Categories

Since $(\mathfrak{D}/\mathfrak{C})_A$ is an exact C^* -category, we can perform the Waldhausen S construction on it, and consider its *fat* geometric realization to get a bisimplicial space $\Omega || wS_{\cdot}(\mathfrak{D}/\mathfrak{C})_A ||$.

Theorem

Let A be a C^{*}-algebra. Then for $i \geq 1$, the Waldhausen K-theory groups $K_i((\mathfrak{O}/\mathfrak{C})_A)$ are isomorphic to topological K-homology groups $K^{1-i}(A)$.

Corollary

Let X be a "nice" topological space Then

$$K_i((\mathfrak{D}/\mathfrak{C})_{C_0(X)}) \cong K_{i-1}(X)$$
 for $i \ge 1$,

where the latter is the Steenrod topological K-homology of X.

< ロ > < 同 > < 三 > < 三 >

K-Theory of Paschke Categories

Since $(\mathfrak{D}/\mathfrak{C})_A$ is an exact C^* -category, we can perform the Waldhausen S construction on it, and consider its *fat* geometric realization to get a bisimplicial space $\Omega || wS_{\cdot}(\mathfrak{D}/\mathfrak{C})_A ||$.

Theorem

Let A be a C^* -algebra. Then for $i \geq 1$, the Waldhausen K-theory groups $K_i((\mathfrak{D}/\mathfrak{C})_A)$ are isomorphic to topological K-homology groups $K^{1-i}(A)$.

Corollary

Let X be a "nice" topological space Then

$$K_i((\mathfrak{D}/\mathfrak{C})_{C_0(X)}) \cong K_{i-1}(X)$$
 for $i \ge 1$,

where the latter is the Steenrod topological K-homology of X.

イロト イボト イヨト イヨト

Let $\rho:A\to \mathfrak{B}(H)$ be an *ample* representation. Then define **Paschke Dual** $\mathfrak{Q}_\rho(A)$ to be the quotient of pseudo-local operators modulo locally compact operators with respect to ρ . Voiculescu's theorem says that isomorphism class of the C^* -algebra $\mathfrak{Q}_\rho(A)$ doesn't depend on the choice of the ample representation ρ .

Theorem (Paschke)

The K-theory groups $K_i(\mathfrak{Q}(A))$ of the Paschke dual are isomorphic to the K-homology groups $K^{1-i}(A)$ of the C^* -algbera A.

The subcategory of ample representations in $(\mathfrak{D}/\mathfrak{C})_A$ is strictly cofinal. The rest follows from Waldhausen's cofinality theorem. \Box

< ロ > < 同 > < 三 > < 三

Let $\rho:A\to \mathfrak{B}(H)$ be an *ample* representation. Then define **Paschke Dual** $\mathfrak{Q}_\rho(A)$ to be the quotient of pseudo-local operators modulo locally compact operators with respect to ρ . Voiculescu's theorem says that isomorphism class of the C^* -algebra $\mathfrak{Q}_\rho(A)$ doesn't depend on the choice of the ample representation ρ .

Theorem (Paschke)

The K-theory groups $K_i(\mathfrak{Q}(A))$ of the Paschke dual are isomorphic to the K-homology groups $K^{1-i}(A)$ of the C^* -algbera A.

The subcategory of ample representations in $(\mathfrak{D}/\mathfrak{C})_A$ is strictly cofinal. The rest follows from Waldhausen's cofinality theorem. \Box

Let $\rho:A\to \mathfrak{B}(H)$ be an *ample* representation. Then define **Paschke Dual** $\mathfrak{Q}_\rho(A)$ to be the quotient of pseudo-local operators modulo locally compact operators with respect to ρ . Voiculescu's theorem says that isomorphism class of the C^* -algebra $\mathfrak{Q}_\rho(A)$ doesn't depend on the choice of the ample representation ρ .

Theorem (Paschke)

The K-theory groups $K_i(\mathfrak{Q}(A))$ of the Paschke dual are isomorphic to the K-homology groups $K^{1-i}(A)$ of the C^* -algbera A.

The subcategory of ample representations in $(\mathfrak{D}/\mathfrak{C})_A$ is strictly cofinal. The rest follows from Waldhausen's cofinality theorem.

• □ > • □ > • □ > ·

The Dolbeault Complex

Goal: Construct the Riemann-Roch map $K_0^{hol}(X) \to K_0^{top}(X)$ for a complex space X. A complicated construction for this was given by Roni Levy in Acta Math, vol 158(1987).

Let X be a complex manifold of dimension n (not necessarily compact), and let E be a holomorphic vector bundle on X. Then we have the **Dolbeault resolution** of $\mathcal{O}(E)$:

$$0 \to \mathcal{O}(E) \hookrightarrow \mathcal{A}^{0,0}(E) \xrightarrow{\bar{\partial}} \mathcal{A}^{0,1}(E) \xrightarrow{\bar{\partial}} \dots \xrightarrow{\bar{\partial}} \mathcal{A}^{0,n}(E) \to 0.$$

< /₽ > < E >

The Dolbeault Complex

Goal: Construct the Riemann-Roch map $K_0^{hol}(X) \to K_0^{top}(X)$ for a complex space X. A complicated construction for this was given by Roni Levy in Acta Math, vol 158(1987).

Let X be a complex manifold of dimension n (not necessarily compact), and let E be a holomorphic vector bundle on X. Then we have the **Dolbeault resolution** of $\mathcal{O}(E)$:

$$0 \to \mathcal{O}(E) \hookrightarrow \mathcal{A}^{0,0}(E) \xrightarrow{\bar{\partial}} \mathcal{A}^{0,1}(E) \xrightarrow{\bar{\partial}} \dots \xrightarrow{\bar{\partial}} \mathcal{A}^{0,n}(E) \to 0.$$

If X is compact, fix a hermitian metric on X and on the vector bundle E. Define:

- The Hilbert spaces $H^i = L^2$ -completion of $\Gamma(X, \mathcal{A}^{0,i}(E))$.
- The representations $\rho^i: C_0(X) \to \mathfrak{B}(H^i)$ by point-wise multiplication.
- The bounded operator $\chi(D)$ by applying functional calculus on $D = \bar{\partial} + \bar{\partial}^*$, where $\chi(t) = \frac{t}{\sqrt{1+t^2}}$. Let $\chi_i(D)$ denote the restriction to $\mathfrak{B}(H^i, H^{i+1})$.

Then the sequence $au_X'(E)$

$$0 \to \rho^0 \xrightarrow{\chi_0(D)} \rho^1 \xrightarrow{\chi_1(D)} \dots \xrightarrow{\chi_{n-1}(D)} \rho^n \to 0$$

is an exact sequence in the Paschke category $(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$

If X is compact, fix a hermitian metric on X and on the vector bundle E. Define:

- The Hilbert spaces $H^i = L^2$ -completion of $\Gamma(X, \mathcal{A}^{0,i}(E))$.
- The representations $\rho^i: C_0(X) \to \mathfrak{B}(H^i)$ by point-wise multiplication.
- The bounded operator $\chi(D)$ by applying functional calculus on $D = \bar{\partial} + \bar{\partial}^*$, where $\chi(t) = \frac{t}{\sqrt{1+t^2}}$. Let $\chi_i(D)$ denote the restriction to $\mathfrak{B}(H^i, H^{i+1})$.

Then the sequence $au_X'(E)$

$$0 \to \rho^0 \xrightarrow{\chi_0(D)} \rho^1 \xrightarrow{\chi_1(D)} \dots \xrightarrow{\chi_{n-1}(D)} \rho^n \to 0$$

is an exact sequence in the Paschke category $(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$

If X is compact, fix a hermitian metric on X and on the vector bundle E. Define:

- The Hilbert spaces $H^i = L^2$ -completion of $\Gamma(X, \mathcal{A}^{0,i}(E))$.
- The representations $\rho^i: C_0(X) \to \mathfrak{B}(H^i)$ by point-wise multiplication.
- The bounded operator $\chi(D)$ by applying functional calculus on $D = \bar{\partial} + \bar{\partial}^*$, where $\chi(t) = \frac{t}{\sqrt{1+t^2}}$. Let $\chi_i(D)$ denote the restriction to $\mathfrak{B}(H^i, H^{i+1})$.

Then the sequence $au_X'(E)$

$$0 \to \rho^0 \xrightarrow{\chi_0(D)} \rho^1 \xrightarrow{\chi_1(D)} \dots \xrightarrow{\chi_{n-1}(D)} \rho^n \to 0$$

is an exact sequence in the Paschke category $(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$

If X is compact, fix a hermitian metric on X and on the vector bundle E. Define:

- The Hilbert spaces $H^i = L^2$ -completion of $\Gamma(X, \mathcal{A}^{0,i}(E))$.
- The representations $\rho^i: C_0(X) \to \mathfrak{B}(H^i)$ by point-wise multiplication.
- The bounded operator $\chi(D)$ by applying functional calculus on $D = \bar{\partial} + \bar{\partial}^*$, where $\chi(t) = \frac{t}{\sqrt{1+t^2}}$. Let $\chi_i(D)$ denote the restriction to $\mathfrak{B}(H^i, H^{i+1})$.

Then the sequence $au_X'(E)$

$$0 \to \rho^0 \xrightarrow{\chi_0(D)} \rho^1 \xrightarrow{\chi_1(D)} \dots \xrightarrow{\chi_{n-1}(D)} \rho^n \to 0$$

is an exact sequence in the Paschke category $(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$

< D > < A > < B > < B >

If X is compact, fix a hermitian metric on X and on the vector bundle E. Define:

- The Hilbert spaces $H^i = L^2$ -completion of $\Gamma(X, \mathcal{A}^{0,i}(E))$.
- The representations $\rho^i: C_0(X) \to \mathfrak{B}(H^i)$ by point-wise multiplication.
- The bounded operator $\chi(D)$ by applying functional calculus on $D = \bar{\partial} + \bar{\partial}^*$, where $\chi(t) = \frac{t}{\sqrt{1+t^2}}$. Let $\chi_i(D)$ denote the restriction to $\mathfrak{B}(H^i, H^{i+1})$.

Then the sequence $\tau'_X(E)$

$$0 \to \rho^0 \xrightarrow{\chi_0(D)} \rho^1 \xrightarrow{\chi_1(D)} \dots \xrightarrow{\chi_{n-1}(D)} \rho^n \to 0$$

is an exact sequence in the Paschke category $(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$.

< ロ > < 同 > < 回 > < 回 > .

The sequence $\tau'_X(E)$ in the Paschke category $(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$ doesn't depend on the choice of hermitian metric. If we choose a *metric of bounded geometry* then by a result of Engel, the argument of why $\tau'_X(E)$ is an exact sequence when X is compact, goes through in the non-compact case as well.

 τ' extends to a functor $\tau'_X : \mathbf{M}(X) \to Ch^b(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$ from the exact category of vector bundles on X to the category of acyclic bounded chain-complexes in $(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$, which is exact.

< 同 > < 三 >

The sequence $\tau'_X(E)$ in the Paschke category $(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$ doesn't depend on the choice of hermitian metric. If we choose a *metric of bounded geometry* then by a result of Engel, the argument of why $\tau'_X(E)$ is an exact sequence when X is

compact, goes through in the non-compact case as well.

 τ' extends to a functor $\tau'_X : \mathbf{M}(X) \to Ch^b(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$ from the exact category of vector bundles on X to the category of acyclic bounded chain-complexes in $(\mathfrak{D}/\mathfrak{C})_{C_0(X)}$, which is exact.

< 一 一 一 ト 、 、 三 ト

Double Exact Sequences

Let \mathcal{A} be an exact category, and let $Bi(\mathcal{A})$ be the exact category of bounded binary (double) acyclic chain complexes in \mathcal{A} . Grayson shows that there is a map $\mathbb{K}(Bi(\mathcal{A})) \to \Omega\mathbb{K}(\mathcal{A})$.

So far, we have a map $\tau'_X : \mathbb{K}^{hol}(X) \to \mathbb{K}^{top}(Ch^b(\mathfrak{D}/\mathfrak{C})_{C_0(X)}).$

For a bounded operator $T: H^1 \to H^2,$ we can assign an automorphism to it:

 $\dots \oplus H^1 \oplus H^1 \oplus H^1 \oplus H^1 \oplus H^2 \oplus H^2 \oplus \dots$ $\dots \oplus H^1 \oplus H^1 \oplus H^1 \oplus H^2 \oplus H^2 \oplus \dots$

< ロ > < 同 > < 回 > < 回 >

Double Exact Sequences

Let \mathcal{A} be an exact category, and let $Bi(\mathcal{A})$ be the exact category of bounded binary (double) acyclic chain complexes in \mathcal{A} . Grayson shows that there is a map $\mathbb{K}(Bi(\mathcal{A})) \to \Omega\mathbb{K}(\mathcal{A})$.

So far, we have a map
$$\tau'_X : \mathbb{K}^{hol}(X) \to \mathbb{K}^{top}(Ch^b(\mathfrak{D}/\mathfrak{C})_{C_0(X)}).$$

For a bounded operator $T: H^1 \to H^2,$ we can assign an automorphism to it:

▲□ ► < □ ► </p>

Double Exact Sequences

Let \mathcal{A} be an exact category, and let $Bi(\mathcal{A})$ be the exact category of bounded binary (double) acyclic chain complexes in \mathcal{A} . Grayson shows that there is a map $\mathbb{K}(Bi(\mathcal{A})) \to \Omega\mathbb{K}(\mathcal{A})$.

So far, we have a map $\tau'_X : \mathbb{K}^{hol}(X) \to \mathbb{K}^{top}(Ch^b(\mathfrak{D}/\mathfrak{C})_{C_0(X)}).$

For a bounded operator $T:H^1\to H^2,$ we can assign an automorphism to it:

$$\dots \oplus H^1 \oplus H^1 \oplus H^1 \oplus H^1 \oplus H^2 \oplus H^2 \oplus \dots$$
$$\dots \oplus H^1 \oplus H^1 \oplus H^1 \oplus H^2 \oplus H^2 \oplus \dots$$

< ロ > < 同 > < 三 > < 三 >

The Large Diagram

We can generalize this process to assign a binary (acyclic) chain complex to a (an acyclic) chain complex (ρ^{\cdot},T^{\cdot}) in the Paschke category as follows:

The Riemann-Roch Theorem

Hence we get the functor

$$\tau_X : \mathbb{K}^{hol}(X) \xrightarrow{\tau'_X} \mathbb{K}^{top}(Ch^b(\mathfrak{D}/\mathfrak{C})_{C_0(X)}) \to \mathbb{K}^{top}(Bi(\mathfrak{D}/\mathfrak{C})_{C_0(X)}) \to \Omega \mathbb{K}^{top}((\mathfrak{D}/\mathfrak{C})_{C_0(X)}) \cong \mathbb{K}^{top}(X).$$

Theorem (Riemann-Roch)

Let X, Y be complex manifolds, $\iota : U \to X$ be inclusion of an open subset, and let $f : X \to Y$ be a proper, smooth and surjective morphism. Then we have the commutative diagrams below.

The Dolbeault Complex Conclusion

The Riemann-Roch Theorem

Hence we get the functor

$$\tau_X : \mathbb{K}^{hol}(X) \xrightarrow{\tau'_X} \mathbb{K}^{top}(Ch^b(\mathfrak{D}/\mathfrak{C})_{C_0(X)}) \to \mathbb{K}^{top}(Bi(\mathfrak{D}/\mathfrak{C})_{C_0(X)}) \to \Omega \mathbb{K}^{top}((\mathfrak{D}/\mathfrak{C})_{C_0(X)}) \cong \mathbb{K}^{top}(X).$$

Theorem (Riemann-Roch)

Let X, Y be complex manifolds, $\iota : U \to X$ be inclusion of an open subset, and let $f : X \to Y$ be a proper, smooth and surjective morphism. Then we have the commutative diagrams below.

$$\begin{array}{cccc} K^{hol}(X) & & \iota^{!} & & K^{hol}(U) & & K^{hol}(X) & \xrightarrow{Rf_{*}} & K^{hol}(Y) \\ \tau_{X} & & & \downarrow \tau_{U} & & \downarrow \tau_{X} & & \downarrow \tau_{Y} \\ K^{top}(X) & & & \iota^{*} & K^{top}(U) & & K^{top}(X) & \xrightarrow{f_{*}} & K^{top}(Y) \end{array}$$

Paschke Categories The Dolbeault Complex Riemann-Roch Map Conclusion

Thank You for Listening!

Khashayar Sartipi Paschke Category and K-homology

・ 同 ト ・ ヨ ト ・ ヨ ト

э