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1 Introduction

My main area of research is K-theory and specifically, I am studying relations between algebraic and topo-
logical K-theory of complex analytic spaces. In general, K-theory is the study of a topological space through
the structure of the category of vector bundles over that space. While algebraic K-theory contains a great
deal of information about this category, it is notoriously difficult to compute.

Grothendieck introduced K-theory [5] to formulate his generalization of the Hirzebruch Riemann-Roch
theorem as a relative statement about proper morphisms of regular algebraic varieties. Since the push-forward
of a locally free sheaf with respect to a proper morphism no longer has to be locally free, it is essential to work
with the category of coherent sheaves instead, which is invariant under proper push-forwards. A central fact
used in Grothendieck’s proof is that any coherent sheaf on a regular algebraic variety has a global resolution
by locally free sheaves. This is no longer the case for complex manifolds even though there are still local
resolutions.

Baum, Fulton, and MacPherson [4] and later Gillet [6], generalized Grothendieck’s theorem to a covariant
natural transformation (with respect to proper maps) between the algebraic K-theory spectrum of a possibly
singular algebraic variety to its topological K-homology spectrum, which is easier to compute.

In [1], Atiyah employed ideas from theory of operator algebras to develop a K-homology theory for spaces
such as complex analytic spaces, which are not smooth manifolds. One way to obtain a K-homology spec-
trum for a C∗-algebra A, is to use the K-theory spectrum of the C∗-algebra Q(A) called the Paschke dual
of A [14]. However the definition of the Paschke dual depends on the choice of a representation of A and
is only functorial up to homotopy. In regards to complex analytic spaces, Levy constructs a Riemann-Roch
transformation (with respect to proper maps) [10, 11]. Nevertheless this construction does not elucidate
fully the interaction between algebraic and topological K-theory.

I outline below the method I have used to define a Riemann-Roch transformation from the algebraic
K-theory spectrum to the topological K-homology spectrum of a complex manifold. This method may
be generalized to complex analytic spaces, and could unify Grothendieck’s approach to the Riemann-Roch
theorem with the Atiyah-Singer index theorem [2].

To define this transformation, let A be a C∗-algebra. We give a completely functorial construction of a K-
theory spectra whose shifted homotopy groups are the topological K-homology groups of A. To achieve this,
we introduce the Paschke category (D/C)A of A, which is an exact C∗-category, functorial in A. Hence we can
apply Waldhausen’s S·-construction on this category [19] to obtain the designated spectrum. Subsequently
we realize the Dolbeault complex in this category as an exact sequence in the Paschke category and show
that this process induces a map of spectra

τDX : Kalg(X)→ K(Ch(D/C)C0(X)) (1.1)

wherein for an exact category A, Ch(A) denotes the category of bounded acyclic chain complexes in A.
Next we construct a natural map of spectra Ktop(Ch(D/C)A) → ΩKtop((D/C)A). When X is a complex
manifold and the C∗-algebra A = C0(X), the composition of this map with τDX introduced in 1.1, will give
our Riemann-Roch transformation, which we will denote by τX .

Theorem 1.1. Let f : X → Y be a proper smooth morphism of complex manifolds. It follows from our
definition of τ that the diagram below commutes up to homotopy:

Kalg(X) Kalg(Y )

Ktop(X) Ktop(Y ).

Rf∗

τX τY

f∗

(1.2)

Also, τ behaves well with respect to restriction to open subsets.

In Section 2, I will define the Paschke category, and discuss its K-theory. Then I will describe in greater
detail the ideas involved in the Riemann-Roch transformation in Section 3. Finally, in Section 4, I will
describe why I believe this new approach could lead to fruitful results in both algebraic and topological
sides of K-theory, and most importantly, can further illuminate our understanding of the intimate relations
between them.
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2 K-theory and Paschke Category

For a compact manifold X, topological K-theory K0
top(X) is defined [3] as the abelian group generated by

the isomorphism classes of vector bundles over X, with the group action defined by taking the direct sum
of the vector bundles. Then one defines Kn

top(X) as the topological K-theory of the smash product Sn ∧X
of the n-dimensional sphere with X. This process is contravariant, as we can pull-back vector bundles, and
defines a cohomology theory which corresponds to the spectrum BU . The dual homology theory (originally
defined via Spanier-Whitehead duality [17]) corresponding to BU is called the topological K-homology. One
way to expand the scope of topological K-theory and K-homology is to use theory of C∗-algebras.

Recall that a C∗-algebra is a complex normed algebra which is complete with respect to the given norm,
and has an involutive ∗-operator with the expected compatibility between all three of these structures. For
example for a manifold X, the algebra C0(X) of continuous complex valued functions which vanish at infinity
with the supremum norm and taking conjugation as the ∗-operator is a commutative C∗-algebra. Morphisms
between two C∗-algebras which preserve the structure are called ∗-morphisms. We call a ∗-morphism ρ from
A to the C∗-algebra of bounded operators on a Hilbert space B(H) a representation. Also, for representations
ρi : A → B(Hi), i = 1, 2 we say a bounded operator T : H1 → H2, is pseudo-local if Tρ1(a) − ρ2(a)T is
always compact, and we say it is locally compact if both Tρ1(a), ρ2(a)T are compact.

We say that the category A is enriched in the category B, if for each two objects of A the morphisms
between them is an object in the category B. We can define a C∗-category as a category enriched in
the category of Banach spaces, with an involutive ∗-operation on the morphisms. Any C∗-algebra can be
considered as a C∗-category with one object whose morphism space is the mentioned C∗-algebra.

Quillen defined exact categories as additive categories with a suitable class of short exact sequences, and
defined K-theory of exact categories [15]. For example for a complex manifold X, category of holomorphic
vector bundles on X, or category of coherent analytic sheaves on X are both exact categories, and algebraic
K-theory spectrum Kalg(X) is defined as the K-theory spectrum of the category of coherent analytic sheaves
on X. As a matter of fact, this defines a covariant functor with respect to proper morphisms of complex
analytic spaces. Waldhausen generalized Quillen’s construction to categories with two classes of morphisms,
called the cofibrations (resembeling admissible monomorphisms) and the weak equivalences [19]. These cat-
egories are now called Waldhausen categories, and he defined K-theory space of a Waldhausen category A by
defining a simplicial category S·A, then constructing a topological space by restricting to weak equivalences
wS·A of this category, and then considering the loop space Ω|wS·A| of its goemetric realization.

For a C∗-algebra A we define the Paschke category (D/C)A of A to be the C∗-category whose objects
are representations of A, and morphisms between two representations are pseudo-local operators modulo
locally compact operators. We define an exact structure on this category by simply saying that a chain
complex is exact, if there is a contracting homotopy. Precomposing a representation of a C∗-algebra B with
a ∗-morphism f : A → B, induces an exact pull-back functor f∗ : (D/C)B → (D/C)A, and this process is
functorial.

Much of the machinery used by Waldhausen also works in the setting of topological categories [12], and
in particular for C∗-categories. Hence, we can apply Waldhausen’s construction on the exact C∗-category
(D/C)A, and then apply fat geometric realization [16] to obtain a topological space Ω‖wS·(D/C)A‖ whose
homotopy groups are the K-theory groups of the Paschke category. Then we prove the following.

Theorem 2.1. Let A be a separable C∗-algebra and let i ≥ 1. Then the topological K-theory groups
Ki((D/C)A) of the Paschke category of A are isomorphic to topological K-homology groups K1−i(A) of
A.

The proof revolves around a certain class of representations called the ample representations. These
form a strictly cofinal subcategory (in the sense of [19]) of the Paschke category, and hence their K-theory
spectrum is homotopy equivalent to that of the Paschke category. Moreover by Voiculescu’s theorem [18],
the C∗-algebra of automorphisms of any ample representation is independent of the choice of the ample
representation, and is called the Paschke dual Q(A) of A. This means that Ki((D/C)A) = πi(Q(A)) which
is equal to K1−i(A) by [14].
The fact that pull-back maps agree under this isomorphism is a result of the additivity theorem [15][19].
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3 The Riemann-Roch transformation

By theorem 2.1, we can use the Paschke category to obtain a map to the topological K-homology spectrum.
We proceed to define the Riemann-Roch transformation for complex manifolds in three steps, in which of
course the first step is the hardest.

1. Let X be a complex manifold and let E be a holomorphic vector bundle on it. We can consider the
Dolbeault complex A0,∗(E) with coefficients in E. Consider the L2-integrable sections of the A0,i(E)
with respect to a choice of hermitian metrics, which comes together with the natural representations ρi

given by point-wise multiplication. This gives a sequence of objects in the Paschke category (D/C)C0(X).
The Dolbeault operatorDE = ∂̄E+∂̄∗E is unbounded, however, it is an essentially self-adjoint and elliptic
differential operator, and hence one can apply functional calculus to it with respect to the bounded
function χ(t) = t√

1+t2
to obtain the pseudo-local (and in particular bounded) operator χ(DE) which

has the same index theoretic properties as DE . This determines an exact sequence

0→ ρ0
χ0(DE)−−−−−→ ρ1

χ1(DE)−−−−−→ . . .
χn−1(DE)−−−−−−−→ ρn → 0

in the Paschke category (D/C)C0(X). If X is a compact manifold, then by the Hodge decomposition
theorem, the above sequence of Hilbert spaces is quasi-isomorphic to the Dolbeault complex. One can
also show that the choice of the hermitian metric on the bundle E does not affect the objects (up to
natural isomorphisms) over relatively compact open subsets. By theorem 2.1 and by descent properties
of topological K-homology, the local maps glue to give a global map

τDX : Kalg(X)→ K(Ch(D/C)C0(X))

wherein for an exact category A, Ch(A) denotes the category of bounded acyclic chain complexes in
A.

2. Let Bi(A) denote the category of bounded acyclic double chain complexes in A. For example, start
with a chain complex, and copy each differential to obtain a double chain complex. This induces a
natural functor ∆ : Ch(A) → Bi(A). For a discrete exact category A, Grayson in [7] constructs a
homotopy equivalence of spectra between the homotopy cofiber of ∆ : K(Ch(A))→ K(Bi(A)) and the
loop space ΩK(A) of the K-theory spectrum of A. By going through the arguments one can still define
the map τGA as a natural map of spectra from the homotopy cofiber of ∆ : K(Ch(A))→ K(Bi(A)) to
ΩK(A) for a topological exact category A.

3. The last ingredient we need is given by a generalization of the process used by Higson in [8]. We define
an exact functor τHA which sends an acyclic chain complex (ρ·, T ·) in the Paschke category (D/C)A
to the double chain complex displayed below, where the double chain complex is considered with the
diagonal arrows as the top chain complex, and the vertical arrows as the bottom chain complex. All
the maps with no label are the trivial ones.

...
. . .

. . . ⊕ (ρn−1 ⊕ ρn) ⊕ (ρn−1 ⊕ ρn) ⊕ ρn

. . . ⊕ (ρn ⊕ ρn+1) ⊕ (ρn ⊕ ρn+1) ⊕ (ρn ⊕ ρn+1) ⊕ ρn+1

. . . ⊕ (ρn+1 ⊕ ρn+2) ⊕ (ρn+1 ⊕ ρn+2) ⊕ (ρn+1 ⊕ ρn+2) ⊕ (ρn+1 ⊕ ρn+2) ⊕ ρn+2

...
...

...
... ρn+1

...

Tn−1

Tn

Tn+1

By composing these three maps we obtain a map from the K-theory spectrum of the category of locally
free sheaves on the complex manifold X to its topological K-homology spectrum. This induces a Riemann-
Roch transformation τX from algebraic K-theory spectrum of X to its topological K-homology spectrum.
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By carefully following the construction above, one can show that τ commutes up to homotopy with the
push-forward with respect to proper smooth morphisms, and also restriction to open subsets. This is the
content of theorem 1.1.

Question 1. Let ι : X → Y be a closed embedding of complex manifolds. Does the diagram 1.2 still
commute up to homotopy? In other words, is τYRι∗ homotopic to ι∗τX where Rι∗ is the derived pushforward
of coherent analytic sheaves and ι∗ is the pull-back map on the Paschke category induced by the restriction
map ι∗ : C0(Y )→ C0(X)?

Currently, I aim to resolve the problem in the case when ι is inclusion of a point. Then I plan to reduce
question 1 to inclusion of X as the zero section in its normal bundle in Y , and reduce that to inclusion of
Cn in Cn+m as a subspace. Then I will investigate if this can resolve the Riemann-Roch problem in full
generality.

4 Future directions

For a pair of C∗-algebras A,B, the bivariant KK-groups KK(A,B) are defined as the abelian group gener-
ated by objects called the Fredholm modules, with relations induced by direct sum, homotopy, and unitary
equivalence [9]. A Fredholm module is a triple (ρ,H, F ), where H is a Hilbert B-module (i.e. the inner
product takes values in the C∗-algebra B instead of the complex numbers, and there is a continuous action
of B on H), and ρ is a representation of A into B-linear bounded operators on H, and F is a pseudo-local
B-linear bounded operator on H, so that F −F ∗ and F 2− IdH are locally compact. When B = C this gives
K-homology of the C∗-algebra A, and when A = C, this gives the K-theory of the C∗-algebra B.

One of the most powerful properties of Kasparov bivariant KK-theory is the Kasparov product, which as
a special case for C∗-algebras A,B,C, gives a bilinear composition product

KK(A,B)×KK(B,C)→ KK(A,C).

The construction of the product relies on Kasparov’s technical theorem [9]. This brings me to my first
objective.

Objective 4.1. For nuclear C∗-algebras A,B, construct a biexact functor (D/C)A× (D/C)B → (D/C)A⊗B .
Such a functor would in turn induce a product structure on K-homology spectra of nuclear C∗-algebras.

Compare the product structure to Kasparov product.

It is immediate that Kasparov’s technical theorem is very close to what we need in here. However, the
technical theorem revolves around certain classes of bounded operators on a single Hilbert space and is
not functorial, so it would not directly help here. I would like to investigate the possibility of obtaining a
functorial (Kasparov’s) technical theorem, and use it to define a product structure.

The definition of the Paschke category given above can be generalized in different directions to more
general exact C∗-categories, e.g. similar to [13] one can define the Paschke category as a category of ∗-
functors between certain C∗-categories.

Objective 4.2. Define a bivariant Paschke category whose K-theory groups are isomorphic to the bivariant
KK-groups.

I intend to explore the exciting possibility of using categorical machinery of algebraic K-theory to obtain
new results for KK-theory, or find new insights for existing properties.

Finally, in a slightly different direction, it is easy to observe the similarities between the technical details
used in the first step (as above) of defining the Riemann-Roch transformation, and the details of defining a
class corresponding to a Dirac operator on a spinC-manifold in Kasparov K-homology. Following this thread
of ideas, I wonder if it is possible to:
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Objective 4.3. Replicate the whole process of the Riemann-Roch transformation for the Dolbeault operator
(as explained above) for a Dirac operator on a spinC-manifold. Does such a transformation still make the
diagram 1.2 commute?

If this can be achieved, then there will be a new natural interplay between the Grothendieck Riemann-
Roch theorem and the Atiyah-Singer index theorem.
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