Review 2 Solutions

1. Find all values of x that are NOT in the domain of the following functions.
$f(x)=\frac{3 x}{2 x-10}$
$g(x)=\frac{x^{2}+2 x-63}{x^{2}-49}$

To answer these, we can not let the denominators be zero, so any x value that makes the denominator zero is NOT in the domain.
$2 x-10=0 x=5$ is not in the domain. $\quad x^{2}-49=0 \quad x= \pm 7$ are not in the domain.
2. Simplify.
$\frac{7(2 w+5)(w+6)}{21(w+4)(2 w+5)}$
$\frac{x-8}{x^{2}-64}$
$\frac{4 u^{2}-100}{u^{2}-8 u+15}$
$\frac{w+6}{3(w+4)}$
$=\frac{x-8}{(x+8)(x-8)}=\frac{1}{x+8}$
$=\frac{4(u+5)(u-5)}{(u-5)(u-3)}=\frac{4(u+5)}{u-3}$
3. Perform the operation and simplify.

$$
\begin{aligned}
& \frac{2 y}{3 a} \cdot \frac{9 a y}{10 y^{5}} \quad \frac{4 x-20}{45 x-40} \cdot \frac{9 x-8}{2 x-10} \quad \frac{x-1}{x^{2}-x-6} \cdot \frac{4 x+8}{x-2} \quad \frac{x^{2}-3 x+2}{x^{2}+5 x+6} \div \frac{4 x-8}{x+2} \\
& \frac{3}{5 y^{3}} \quad=\frac{4(x-5)}{5(9 x-8)} \cdot \frac{9 x-8}{2(x-5)}=\frac{2}{5} \quad=\frac{x-1}{(x-3)(x+2)} \cdot \frac{4(x+2)}{x-2}=\frac{4(x-1)}{(x-3)(x-2)} \quad=\frac{(x-2)(x-1)}{(x+3)(x+2)} \cdot \frac{x+2}{4(x-2)}=\frac{x-1}{4(x+3)} \\
& \frac{c^{2}-9 c}{c^{2}-c-12}+\frac{3 c+8}{c^{2}-c-12} \\
& \frac{5}{6 y}-\frac{9}{8 y^{2}} \\
& \frac{2}{x-5}-\frac{3}{x+4} \\
& \frac{4}{3 x^{2}+2 x-1}+\frac{2}{3 x^{2}-4 x+1} \\
& =\frac{c^{2}-6 c+8}{c^{2}-c-12}=\frac{(c-4)(c-2)}{(c-4)(c+3)}=\frac{c-2}{c+3} \\
& =\frac{20 y}{24 y^{2}}-\frac{27}{24 y^{2}}=\frac{20 y-27}{24 y^{2}} \\
& =\frac{23-x}{(x-5)(x+4)} \\
& =\frac{4(x-1)+2(x+1)}{(3 x-1)(x-1)(x+1)}=\frac{2}{(x+1)(x-1)} \\
& \begin{array}{ll}
\frac{15 s^{4}}{\frac{3 t^{5} u^{3}}{5 r s^{2}}} & \frac{7-\frac{2}{5 y}}{9 t^{2} u}
\end{array} \frac{5 y}{5-\frac{2}{5 y}} \\
& \frac{1-\frac{3}{x+6}}{\frac{9}{x+6}+x} \cdot \frac{(x+6)}{(x+6)} \\
& \frac{1}{u^{-1}-v^{2}} \\
& \frac{15 s^{4}}{3 t^{5} u^{3}} \cdot \frac{9 t^{2} u}{5 r s^{2}}=\frac{9 s^{2}}{r t^{3} u^{2}} \\
& =\frac{35 y-2}{15 y-2} \\
& =\frac{x+6-3}{9+x^{2}+6 x}=\frac{x+3}{(x+3)(x+3)}=\frac{1}{x+3} \\
& =\frac{1}{\frac{1}{u}-v^{2}} \cdot \frac{u}{u}=\frac{u}{1-u v^{2}}
\end{aligned}
$$

4. Evaluate

$$
\begin{array}{lll}
256^{\frac{1}{4}} & 27^{\frac{1}{3}} & (-8)^{\frac{1}{3}} \\
\sqrt{256}=4 & =\sqrt[3]{27}=3 & =\sqrt[3]{-8}=-2
\end{array}=\frac{81^{-\frac{1}{4}}}{\sqrt[4]{81}}=\frac{1}{3}
$$

5. Simplify.

$$
\begin{array}{ccccc}
w^{\frac{5}{7}} \cdot w^{\frac{3}{4}} & \frac{u^{\frac{1}{2}}}{u^{\frac{6}{7}}} & \sqrt{27 u^{14}} & \sqrt{54 x^{13}} & \sqrt{8 t^{5} y^{8}} \\
w^{\frac{20}{28}+\frac{21}{28}}=w^{1 \frac{13}{28}}=w^{28} \sqrt[w^{13}]{40 t^{8} w^{3}} \\
\sqrt{75}-3 \sqrt{27} & u^{\frac{7}{14}-\frac{12}{14}}=u^{-\frac{5}{14}}=\frac{1}{\sqrt[14]{u^{5}}} & 3 u^{7} \sqrt{3} & 3 x^{6} \sqrt{6 x} & 2 t^{2} y^{4} \sqrt{2 t}
\end{array} 2 t^{2} w \sqrt[3]{5 t^{2}}
$$

$$
\begin{array}{ccc}
(\sqrt{x}-\sqrt{2})(\sqrt{x}+\sqrt{2}) & (x+2 \sqrt{2})^{2} & \sqrt[4]{y} \cdot \sqrt[3]{y^{2}} \\
x+\sqrt{2 x}-\sqrt{2 x}+2=x-2 & x^{2}+2 x \sqrt{2}+2 x \sqrt{2}+8=x^{2}+4 x \sqrt{2}+8 & y^{\frac{1}{4}+\frac{2}{3}}=y^{\frac{3}{12}+\frac{8}{12}}=y^{\frac{11}{12}}=\sqrt[12]{y^{11}}
\end{array}
$$

6. Solve. Remember to check your solutions.
$\sqrt{3 y+18}+2=5$
$\sqrt{5 x+10}=\sqrt{7 x-12}$
$\sqrt{11 y-30}=y$
$u-5=\sqrt{49-8 u}$

Isolate the radical, and then square both sides of the equation. Check your solutions. Most of these work, but the last problem has two possible solutions $u=6,-4$, but when you check them, only $u=6$ is the correct solution.
$y=-3$
$11=x$
$y=5,6$
$u=6$
7. Perform the operation and simplify. Write your solution in $a+b i$ form.
$(6-2 i)+(4+3 i)$
$(3-7 i)-(5+4 i)$
$(-3+6 i)(-4+3 i)$

$$
\frac{4-2 i}{2-5 i} \cdot \frac{2+5 i}{2+5 i}
$$

For the last two problems, you will use the fact that $i^{2}=-1$ to simplify them.

$$
10+i
$$

$12-9 i-24 i+18 i^{2}=-6-33 i$

$$
\frac{8+20 i-4 i-10 i^{2}}{4-25 i^{2}}=\frac{18}{29}+\frac{16}{29} i
$$

8. Solve. You may need to use the quadratic formula.
$(v-7)^{2}-32=0$

$$
(w+9)^{2}-45=0
$$

$$
v=7 \pm 4 \sqrt{2} \quad w=-9 \pm 3 \sqrt{5}
$$

$$
\begin{aligned}
& 2 x^{2}+5 x-1 \\
& x=\frac{-5 \pm \sqrt{33}}{4}
\end{aligned}
$$

The third problem had a typo. It should've been set equal to zero.
$4 x^{2}-9 x+3=0$
$3 x^{2}+5 x=3$
$2 x^{2}-3 x+6=0$
$x=\frac{9 \pm \sqrt{33}}{8}$
$x=\frac{-5 \pm \sqrt{61}}{6}$
$x=\frac{3 \pm i \sqrt{39}}{4}$
9. A model rocket is launched with an initial upward velocity of $235 \frac{\mathrm{ft}}{\mathrm{sec}}$. The rocket's height h (in feet) after t seconds is given by $h=235-16 t^{2}$.

Find all values of t for which the rocket's height is 151 ft .
This problem also had a typo. The equation should've been $h=235 t-16 t^{2}$. However, since the original does not say that, I will give the solution according to the original.
$151=235-16 t^{2}$
$-84=-16 t^{2}$
$\frac{21}{4}=t^{2} \quad \frac{\sqrt{21}}{2}=t$
10. Graph the following functions. Make sure to label the vertex.
$g(x)=-2 x^{2}$
$h(x)=3 x^{2}-1$
$y=(x-1)^{2}-3$

11. State the vertex and x-intercepts of the following functions, then use them to graph the function. $y=x^{2}-4 x-21$

$$
y=x^{2}-8 x+12
$$

Use the fact that the x-value of the vertex is $\frac{-b}{2 a}$, and then plug this back in to get the y-value of the vertex. To find the x-intercepts, you can set $y=0$, and then factor and solve for x. vertex: $(2,-25) x$-intercepts: $(7,0),(-3,0)$
vertex: $(4,-4) x$-intercepts: $(6,0),(2,0)$

12. Given $f(x)=-2 x^{2}+16 x-34$, answer the following.

Does the function have a minimum or a maximum value? Maximum, because the negative coefficient of x^{2} means it opens downward, making the vertex a maximum.
At what x value does the min/max occur? $x=\frac{-16}{2(-2)}=4$ so $x=4$.
What is the min/max value? $y=f(4)=-2\left(4^{2}\right)+16(4)-34$ so $y=-2$
13. A supply company manufactures copy machines. The unit cost C (cost in dollars to make each copy machine) depends on the number of machines made. If x machines are made, then the unit cost is given by $C(x)=$ $0.5 x^{2}-170 x+25,850$. What is the minimum unit cost?
Since this is a quadratic equation, with a leading coefficient that is positive, it opens upward, making its vertex a minimum. To find the minimum unit cost, we need to find the y-value of the vertex.
$x=\frac{170}{2(0.5)}=170 \quad C(170)=0.5\left(170^{2}\right)-170(170)+25,850=11,400$ so the minimum is $\$ 11,400$.
14. $s(x)=3 x+6$

$$
t(x)=4 x
$$

$$
u(x)=x^{2}+7
$$

$$
w(x)=\sqrt{x+8}
$$

Given the functions defined above, find the following expressions.

$$
\begin{array}{ccc}
(s+t)(x) & (s \cdot t)(x) & (s-t)(4) \\
=3 x+6+4 x=7 x+6 \\
w(u(x)) & =(3 x+6)(4 x)=12 x^{2}+24 x & (s-t)(x)=-x+6 \text { so }(s-t)(4)=-4+6=2 \\
=w\left(x^{2}+7\right)=\sqrt{x^{2}+7+8}=\sqrt{x^{2}+15} & =\sqrt{1^{2}+15}=\sqrt{16}=4 & u(u(1))
\end{array}
$$

15. For each pair of functions below, find $f(g(x))$ and $g(f(x))$. Then determine whether f and g are inverses of each other.
$f(x)=\frac{6}{x}$
$f(x)=2 x+3$
$f(x)=\frac{x+7}{5}$
$g(x)=\frac{6}{x}$
$g(x)=2 x-3$
$g(x)=5 x-7$

To show that two functions are inverses of one another, you need to show that $f(g(x))=x$ as well as $g(f(x))=x$.
$f(g(x))=\frac{6}{\frac{6}{x}}=\frac{6}{1} \cdot \frac{x}{6}=x \quad f(g(x))=f(2 x-3)=2(2 x-3)+3=4 x-3 \neq x \quad f(g(x))=f(5 x-7)=\frac{5 x-7+7}{5}=x$ $g(f(x))=\frac{6}{\frac{6}{x}}=\frac{6}{1} \cdot \frac{x}{6}=x \quad$ notice this is not an inverse from $f(g(x)) \neq x . \quad g(f(x))=g\left(\frac{x+7}{5}\right)=\frac{5}{1}\left(\frac{x+7}{5}\right)-7=x$
16. h is a one-to-one function. Find $h^{-1}(x)$.
$h(x) 4 x+3$

$$
h(x)=5 x^{3}+7
$$

$$
h(x)=\sqrt[3]{2 x+5}
$$

There was a typo on the first problem. It should read $h(x)=4 x+3$. To find an inverse function, you can (1) set $f(x)=y$, then (2) switch your x and y variables, and then (3) solve for y. This is now your $f^{-1}(x)$. I'm am going to start with step 2 being done here.
$x=4 y+3$ solve for $y, \& \quad x=5 y^{3}+7$ solve for $y, \& \quad x=\sqrt[3]{2 y+5}$ solve for $y, \&$

$$
\frac{x-3}{4}=h^{-1}(x)
$$

$$
\sqrt[3]{\frac{x-7}{5}}=h^{-1}(x)
$$

$$
\frac{x^{3}-5}{2}=h^{-1}(x)
$$

17. f is a one-to-one function, $f(x)=\sqrt{x+5}+4$.

Find the domain and range of $f(x)$. Then find $f^{-1}(x)$ and its domain.
Domain of $f: x \geq-5$ or you can write $[-5, \infty)$
Range of $f: y \geq 4$ or $[4, \infty)$ notice the lowest number the square root can be is zero and if we then add 4 , the lowest y value possible for this function is 4 .
To find the inverse: $x=\sqrt{y+5}+4$ solve this for $y,(x-4)^{2}-5=y$ so $f^{-1}(x)=(x-4)^{2}-5$
Remember that inverse functions swap domains and ranges. So the domain of f^{-1} is simply the Range of f, so $[4, \infty)$.

