Complex Numbers

Complex Numbers Definition of *i*: $i = \sqrt{-1}$, which means that $i^2 = -1$. $\sqrt{-b} = i\sqrt{b}$ for positive real number *b*.

1. Simplify the following.

$$\sqrt{-81} \qquad \qquad -\sqrt{-25} \qquad \qquad \sqrt{-50} \qquad \qquad -\sqrt{-20}$$

2. When simplifying the product or quotient of an imaginary number, first simplify in terms of i, and then perform the multiplication or division.

For Example, $\sqrt{-2} \cdot \sqrt{-18} = i\sqrt{2} \cdot 3i\sqrt{2} = 3i^2 \cdot (\sqrt{2})^2 = 3(-1) \cdot 2 = -6$. Now you try these:

$$\sqrt{-9} \cdot \sqrt{-16} \qquad \qquad \sqrt{-12} \cdot \sqrt{-50} \qquad \qquad \frac{\sqrt{-27}}{\sqrt{9}} \qquad \qquad \frac{\sqrt{-125}}{\sqrt{45}}$$

3. Powers of i:

i^n	Decomposed	Simplified form	i^n	Decomposed	Simplified form
	form			form	
i	i^1	i	i^5	$i^4 \cdot i = 1 \cdot i$	i
i^2	$i \cdot i$	-1	i^6	$i^4 \cdot i^2 = 1 \cdot -1$	-1
i^3	$i^2 \cdot i = -1 \cdot i$	-i	i^7	$i^4 \cdot i^3 = 1 \cdot -i$	-i
i^4	$i^2 \cdot i^2 = -1 \cdot -1$	1	i^8	$i^4 \cdot i^4 = 1 \cdot 1$	1

Do you see the pattern? Use that pattern to simplify the following: i^{13} i^{26}

Definition of Complex Numbers: A complex number is a number of the form a + bi, where a and b are real numbers, and $i = \sqrt{-1}$.

 i^{43}

If b = 0, the complex number is also a real number. If $b \neq 0$, it is an imaginary number. a + bi and a - bi are called complex conjugates.

4. Addition/Subtraction of complex numbers. $(a + bi) \pm (c + di) = (a \pm c) + (b \pm d)i$, in other words, like we have been doing for like terms, add/subtract the real parts and add/subtract the imaginary parts, keeping them separate. Try the following:

$$(2-i) + (5+7i) - \frac{7}{5}i - (-\frac{2}{5} + \frac{3}{5}i) \qquad (2+3i) - (1-4i) + (-2+7i)$$

5. Multiplication of complex numbers.

$$6i(1-3i) (2-10i)(3+2i) (4+5i)^2 (5+2i)(5-2i)$$

6. For division of complex numbers, we multiply the numerator and denominator of the fraction by the complex conjugate of the denominator. Try the following. Write your answer in a + bi form.

2	-i	7+3i	-6-i
$\overline{1+3i}$	$\overline{4-3i}$	$\overline{4-2i}$	$\overline{-i}$

7. Simplify the following and write in a + bi form.

$$\frac{2+\sqrt{-16}}{8} \qquad \qquad \frac{-6+\sqrt{-72}}{6} \qquad \qquad \frac{-5+\sqrt{-50}}{10}$$