Complex Numbers

Complex Numbers Definition of $i: i=\sqrt{-1}$, which means that $i^{2}=-1$.
$\sqrt{-b}=i \sqrt{b}$ for positive real number b.

1. Simplify the following.
$\sqrt{-81}$
$-\sqrt{-25}$
$\sqrt{-50}$
$-\sqrt{-20}$
2. When simplifying the product or quotient of an imaginary number, first simplify in terms of i, and then perform the multiplication or division.
For Example, $\sqrt{-2} \cdot \sqrt{-18}=i \sqrt{2} \cdot 3 i \sqrt{2}=3 i^{2} \cdot(\sqrt{2})^{2}=3(-1) \cdot 2=-6$. Now you try these:
$\sqrt{-9} \cdot \sqrt{-16}$
$\sqrt{-12} \cdot \sqrt{-50}$
$\frac{\sqrt{-27}}{\sqrt{9}}$

$$
\frac{\sqrt{-125}}{\sqrt{45}}
$$

3. Powers of i:

i^{n}	Decomposed form	Simplified form	i^{n}	Decomposed form	Simplified form
i	i^{1}	i	i^{5}	$i^{4} \cdot i=1 \cdot i$	i
i^{2}	$i \cdot i$	-1	i^{6}	$i^{4} \cdot i^{2}=1 \cdot-1$	-1
i^{3}	$i^{2} \cdot i=-1 \cdot i$	$-i$	i^{7}	$i^{4} \cdot i^{3}=1 \cdot-i$	$-i$
i^{4}	$i^{2} \cdot i^{2}=-1 \cdot-1$	1	i^{8}	$i^{4} \cdot i^{4}=1 \cdot 1$	1

Do you see the pattern? Use that pattern to simplify the following:
$i^{13} \quad i^{26} \quad i^{43}$

Definition of Complex Numbers: A complex number is a number of the form $a+b i$, where a and b are real numbers, and $i=\sqrt{-1}$.
If $b=0$, the complex number is also a real number. If $b \neq 0$, it is an imaginary number. $a+b i$ and $a-b i$ are called complex conjugates.

4. Addition/Subtraction of complex numbers. $(a+b i) \pm(c+d i)=(a \pm c)+(b \pm d) i$, in other words, like we have been doing for like terms, add/subtract the real parts and add/subtract the imaginary parts, keeping them separate. Try the following:
$(2-i)+(5+7 i)$
$-\frac{7}{5} i-\left(-\frac{2}{5}+\frac{3}{5} i\right)$
$(2+3 i)-(1-4 i)+(-2+7 i)$
5. Multiplication of complex numbers.
$6 i(1-3 i)$

$$
(2-10 i)(3+2 i)
$$

$$
(4+5 i)^{2}
$$

$$
(5+2 i)(5-2 i)
$$

6. For division of complex numbers, we multiply the numerator and denominator of the fraction by the complex conjugate of the denominator. Try the following. Write your answer in $a+b i$ form.
$\frac{2}{1+3 i} \quad \frac{-i}{4-3 i} \quad \frac{7+3 i}{4-2 i} \quad \frac{-6-i}{-i}$
7. Simplify the following and write in $a+b i$ form.

$$
\frac{2+\sqrt{-16}}{8}
$$

$$
\frac{-6+\sqrt{-72}}{6}
$$

$$
\frac{-5+\sqrt{-50}}{10}
$$

