Square Root Property, Completing the Square, Quadratic Formula

The Square Root Property: We know that if $x^{2}=a, x=\sqrt{a}$ or $x=-\sqrt{a}$.

1. Use the square root property to solve the following.

$$
\begin{array}{lll}
x^{2}=50 & 16 p^{2}=49 & 3 u^{2}+4=31 \\
\\
(p-5)^{2}=9 & (3 t-4)^{2}=4 & 2(x-3)^{2}-6=0
\end{array}
$$

Notice the second row all had a binomial, like $(x+d)$ squared, which allowed us to use the square root property, since that was the only occurrence of the variable. If we have a quadratic equation that is not in this form, we can rewrite to be in this form, and this is called completing the square.
In fact, we can use completing the square to derive the Quadratic Formula, which shows that if

$$
a x^{2}+b x+c=0, \text { then } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

2. Use completing the square, the Quadratic Formula, or factoring to solve the following.

$$
p^{2}+4 p+6=0
$$

$$
-3 y-10=-y^{2}
$$

$$
2 x(x+6)=14
$$

$$
\frac{1}{5} h^{2}+h+\frac{3}{5}=0
$$

$$
x^{2}+4 x+8=0
$$

3. Remember that x-intercepts happen when $y=0$ or $f(x)=0$, and y-intercepts occur when $x=0$. Find the x and y-intercepts of the functions below. Write your answer in point form.
$g(x)=4 y^{2}+8 y-5$

$$
f(x)=3 x^{2}+2 x-2
$$

4. A baseball is thrown upward with an initial velocity of $32 \frac{f t}{\sec }$ from a cliff that is 48 feet off the ground. The baseball's height h (in feet) after t seconds is given by $h(t)=-16 t^{2}+32 t+48$. Find the time at which the height of the ball is 64 feet.
5. Sketch a graph of $y=x^{2}$ by plotting points, using $x=-3,-2,-1,0,1,2,3$.

6. Sketch the following graphs by plotting points, and compare these to the graph of $y=x^{2}$. $f(x)=x^{2}+3$

$$
g(x)=x^{2}-2
$$

7. Generally, if $f(x)=x^{2}+k$, describe how the graph shifts the $y=x^{2}$ if $k>0$ and if $k<0$.
8. Sketch a graph of the following functions, and compare these to the graph of $y=x^{2}$.
$h(x)=(x-2)^{2}$

$$
k(x)=(x+3)^{2}
$$

9. Generally, if $f(x)=(x-h)^{2}$, describe how the graph shifts the $y=x^{2}$ if $h>0$ and if $h<0$.

