Graphs of Quadratic Equations

1. Sketch the following graphs by plotting points, and compare these to the graph of $y=x^{2}$.
$f(x)=2 x^{2}$

$g(x)=-3 x^{2}$

$h(x)=\frac{1}{2} x^{2}$

2. Generally, if $f(x)=a x^{2}$, describe how a affects the graph of $y=x^{2}$ if $0<a<1$, if $a>1$, if $-1<a<0$, or if $a \leq-1$.
3. Putting this all together, we see that a quadratic equation of the form $f(x)=a(x-h)^{2}+k$, which is called the Vertex Form:

- Is the graph of $y=x^{2}$ shifted h spaces to the right or left (depending on the sign of h), and shifted k spaces up or down (depending on the sign of k). This means that its vertex is (h, k).
- The axis of symmetry is $x=h$.
- If $a>0$, the parabola opens upward, and k is the minimum value of the function.
- If $a<0$, the parabola opens downward, and k is the maximum value of the function.

4. Graph the following. First state their vertex and axis of symmetry. Also, state whether the function has a minimum or a maximum and what that value is.
$f(x)=(x+1)^{2}-3$

$$
g(x)=-2(x-2)^{2}+4
$$

Quadratic equations will not always be written in the vertex form. We can use completing the square to see that when a quadratic equation is in standard form, $a x^{2}+b x+c$, the vertex is given by $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$.
5. For the following quadratic function, find the vertex, x and y-intercepts, and axis of symmetry. State whether it opens up or down and has a minimum or maximum. Where (at what x value) does the min/max occur, and what is that $\min /$ max value. Sketch a graph using what you have found.
$f(x)=x^{2}-6 x+5$

6. Ben sells used iPhones. The average cost to package iPhones is given by the equation $C(x)=3 x^{2}-120 x+$ 1300 , where x is the number of iPhones packaged per month.
Determine the number of iPhones that Ben needs to package in a month to minimize the average cost.

What is the minimum cost?
7. An arrow is shot straight upward into the air from the ground with an initial velocity of $128 \frac{\mathrm{ft}}{\mathrm{sec}}$. The height of the arrow off the ground (in feet) is represented by $h(t)=-16 t^{2}+128 t$, where t is the number of seconds after it is shot. Answer the following.

- At what time does the arrow reach its max height?
- What is its max height?
- When will it reach the ground again?

