MATH 181 (WHYTE), SPRING 08. SAMPLE PROBLEMS

- (1) Use the trapezoid rule with n = 2 to estimate the arc-length of the curve $y = \sin x$ between x = 0 and $x = \pi$.
- (2) (a) Let R be the region between $y = \frac{1}{1+x^2}$ and the x-axis with $x \ge 0$. Does R have finite area? If so, what is the area?
 - (b) Let S be the solid obtained by revolving R around the y-axis. Does S have finite volume? If so, what is the volume?
- (3) Evaluate the following integrals:
 - (a) $\int_{-\pi}^{\pi} \sin^4 x dx$ (b) $\int_{0}^{1} \frac{dx}{2x^2 + 5x + 2}$ (c) $\int_{0}^{1} \frac{dx}{2x^2 + 4x + 3}$ (d) $\int_{0}^{\infty} x^2 e^{-x} dx$
- (4) Use a Taylor polynomial for $y = e^x$ to calculate e to two decimal places. Explain (using the remainder formula) why you have used sufficiently many terms.
- (5) Let S be the surface obtained by revolving the curve $y = \sin x$ between x = 0 and $x = \pi$ around the x-axis. What is the surface area of S?
- (6) (a) Estimate $\ln \frac{3}{2}$ using the degree two Taylor polynomial for y = $\ln x$ around x = 1.
 - (b) Estimate $\ln \frac{3}{2}$ using the Midpoint rule with n = 2 for the integral $\int_{1}^{\frac{3}{2}} \frac{dx}{x}.$ (c) Calculate the error bounds for the two estimates? Does this tell
 - you which is closer to the exact answer?

- (7) Does the improper integral $\int_0^\infty \frac{dx}{1+x^3}$ converge or diverge? Justify your answer.
- (8) What is the arc-length of the segment of the parabola $y = 4 x^2$ above the *x*-axis?
- (9) Find a formula for the general Taylor polynomial $T_n(x)$ for the following functions around the specified points: (a) e^{-x^2} around x = 0(b) \sqrt{x} around x = 1