MATH 181 (WHYTE), SPRING 08. SAMPLE PROBLEMS

(1) Use the trapezoid rule with $n=2$ to estimate the arc-length of the curve $y=\sin x$ between $x=0$ and $x=\pi$.
(2) (a) Let R be the region between $y=\frac{1}{1+x^{2}}$ and the x-axis with $x \geq 0$. Does R have finite area? If so, what is the area?
(b) Let S be the solid obtained by revolving R around the y-axis. Does S have finite volume? If so, what is the volume?
(3) Evaluate the following integrals:
(a) $\int_{-\pi}^{\pi} \sin ^{4} x d x$
(b) $\int_{0}^{1} \frac{d x}{2 x^{2}+5 x+2}$
(c) $\int_{0}^{1} \frac{d x}{2 x^{2}+4 x+3}$
(d) $\int_{0}^{\infty} x^{2} e^{-x} d x$
(4) Use a Taylor polynomial for $y=e^{x}$ to calculate e to two decimal places. Explain (using the remainder formula) why you have used sufficiently many terms.
(5) Let S be the surface obtained by revolving the curve $y=\sin x$ between $x=0$ and $x=\pi$ around the x-axis. What is the surface area of S ?
(6) (a) Estimate $\ln \frac{3}{2}$ using the degree two Taylor polynomial for $y=$ $\ln x$ around $x=1$.
(b) Estimate $\ln \frac{3}{2}$ using the Midpoint rule with $n=2$ for the integral $\int_{1}^{\frac{3}{2}} \frac{d x}{x}$.
(c) Calculate the error bounds for the two estimates? Does this tell you which is closer to the exact answer?
(7) Does the improper integral $\int_{0}^{\infty} \frac{d x}{1+x^{3}}$ converge or diverge? Justify your answer.
(8) What is the arc-length of the segment of the parabola $y=4-x^{2}$ above the x-axis?
(9) Find a formula for the general Taylor polynomial $T_{n}(x)$ for the following functions around the specified points:
(a) $e^{-x^{2}}$ around $x=0$
(b) \sqrt{x} around $x=1$

