Math 210

Hour Exam 2 "Solutions"

1. Find and classify the critical points of the function

$$f(x, y) = x^3 + 3xy - y^3.$$

Solution: To find the critical points we solve the system of equations: $f_x = 3x^2 + 3y = 0$, $f_y = 3x - 3y^2 = 0$. Solving the first equation for y we get $y = -x^2$. After plugging into the second equation and simplifying we get the equation $x - x^4 = 0$ whose real solutions are x = 0, x = 1. When x = 0 the first equation gives us y = 0 and when x = 1 the first equation gives us y = -1. Therefore, the critical points are (0, 0) and (1, -1).

Now use the Second Derivative Test to classify each point. The second partial derivatives of f(x, y) are $f_{xx} = 6x$, $f_{yy} = -6y$, $f_{xy} = 3$. The discriminant D(x, y) is then $D(x, y) = f_{xx}f_{yy} - f_{xy}^2 = -36xy - 9$. The values of D(x, y) at the critical points are D(0, 0) = -9 and D(1, -1) = 27. Since D(0, 0) < 0, we know that (0, 0) is a saddle point. Since D(1, -1) > 0 and $f_{xx}(1, -1) = 6 > 0$, we know that (1, -1) corresponds to a local minimum.

2. Sketch the region of integration and compute
$$\int_0^1 \int_0^y e^{-y^2} dx \, dy$$
. [17 pts]

Solution: The region of integration is shown on the right. The value of the integral is

3. Compute

$$\iiint_A z \, dV$$

where A is the region inside the sphere $x^2 + y^2 + z^2 = 2$, inside the cylinder $x^2 + y^2 = 1$, and above the xy-plane. [17 pts]

Solution: It's easiest to solve this problem using cylindrical coordinates. The region is bounded below by the plane z = 0 and above by the sphere $z = \sqrt{2 - r^2}$, written in cylindrical coordinates. The projection of A onto the xy-plane is a disk of radius 1 centered at the origin. Thus, the integral and its value is $\iiint_A z \, dV = \int_0^{2\pi} \int_0^1 \int_0^{\sqrt{2-r^2}} z \, (r \, dz \, dr \, d\theta) = \frac{3\pi}{4}$.

[17 pts]

4. Compute the integral of the field $\vec{F}(x,y) = (x+y)\vec{i} + 0\vec{j}$ along the curve $\vec{c}(t) = \cos t\vec{i} + \sin t\vec{j}$. [17pts]

Solution: The derivative of $\vec{c}(t)$ is $\frac{d}{dt}\vec{c}(t) = -\sin t\vec{i} + \cos t\vec{j}$ and the vector field written in terms of t is $\vec{F}(\vec{c}(t)) = (\cos t + \sin t)\vec{i} + 0\vec{j}$. The integral of \vec{F} over the curve is $\int_C \vec{F} \cdot d\vec{s} = \int_0^{2\pi} \vec{F}(\vec{c}(t)) \cdot \frac{d}{dt}\vec{c}(t) dt = \int_0^{2\pi} (-\sin t \cos t - \sin^2 t) dt = -\pi$.

5. Find the maximum and minimum of the function f(x, y, z) = 2x - 3y + z subject to the condition $x^2 + 3y^2 + z^2 = 1$. [16 pts]

Solution: We'll use the Method of Lagrange Multipliers to solve the problem. We must solve the system:

$$2 = \lambda(2x), \quad -3 = \lambda(6y), \quad 1 = \lambda(2z), \quad x^2 + 3y^2 + z^2 = 1.$$

Solving the first three equations for x, y, and z in terms of λ we get $x = \frac{1}{\lambda}$, $y = -\frac{1}{2\lambda}$, $z = \frac{1}{2\lambda}$. After plugging these into the fourth equation we get:

$$\left(\frac{1}{\lambda}\right)^2 + 3\left(-\frac{1}{2\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2 = 1 \quad \Longleftrightarrow \quad \lambda^2 = 2 \quad \Longleftrightarrow \quad \lambda = \pm\sqrt{2}$$

The corresponding values of x, y, and z are $x = \pm \frac{1}{\sqrt{2}}$, $y = \pm \frac{1}{2\sqrt{2}}$, $z = \pm \frac{1}{2\sqrt{2}}$. The values of f(x, y, z) at each point are

$$f\left(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}\right) = 2\left(\frac{1}{\sqrt{2}}\right) - 3\left(-\frac{1}{2\sqrt{2}}\right) + \left(\frac{1}{2\sqrt{2}}\right) = \sqrt{8}$$
$$f\left(-\frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right) = 2\left(-\frac{1}{\sqrt{2}}\right) - 3\left(\frac{1}{2\sqrt{2}}\right) + \left(-\frac{1}{2\sqrt{2}}\right) = -\sqrt{8}$$

Therefore, the minimum value of f is $-\sqrt{8}$ and the maximum is $\sqrt{8}$.

6. For the vector field $\vec{F}(x,y) = (x+y)\vec{i} + (x-y)\vec{j}$, find a function $\varphi(x,y)$ with grad $\varphi = \vec{F}$ or use the partial derivative test to show that such a function does not exist. [16 pts]

Solution: By inspection, the function $\varphi(x, y) = \frac{1}{2}x^2 + xy - \frac{1}{2}y^2 + C$ is a potential function for $\vec{F}(x, y)$. To check this, we take the gradient of φ and find that

grad
$$\varphi = (x+y)\vec{i} + (x-y)\vec{j} = \vec{F}.$$