1. Find and classify the critical points of the function

$$
f(x, y)=x^{3}+3 x y-y^{3}
$$

Solution: To find the critical points we solve the system of equations: $f_{x}=3 x^{2}+3 y=0$, $f_{y}=3 x-3 y^{2}=0$. Solving the first equation for y we get $y=-x^{2}$. After plugging into the second equation and simplifying we get the equation $x-x^{4}=0$ whose real solutions are $x=0, x=1$. When $x=0$ the first equation gives us $y=0$ and when $x=1$ the first equation gives us $y=-1$. Therefore, the critical points are $(0,0)$ and $(1,-1)$.

Now use the Second Derivative Test to classify each point. The second partial derivatives of $f(x, y)$ are $f_{x x}=6 x, \quad f_{y y}=-6 y, \quad f_{x y}=3$. The discriminant $D(x, y)$ is then $D(x, y)=$ $f_{x x} f_{y y}-f_{x y}^{2}=-36 x y-9$. The values of $D(x, y)$ at the critical points are $D(0,0)=-9$ and $D(1,-1)=27$. Since $D(0,0)<0$, we know that $(0,0)$ is a saddle point. Since $D(1,-1)>0$ and $f_{x x}(1,-1)=6>0$, we know that $(1,-1)$ corresponds to a local minimum.
2. Sketch the region of integration and compute $\int_{0}^{1} \int_{0}^{y} e^{-y^{2}} d x d y$.

Solution: The region of integration is shown on the right. The value of the integral is

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{y} e^{-y^{2}} d x d y & =\int_{0}^{1} y e^{-y^{2}} d y \\
& =-\left.\frac{1}{2} e^{-y^{2}}\right|_{0} ^{1} \\
& =\frac{1}{2}\left(1-e^{-1}\right)
\end{aligned}
$$

3. Compute

$$
\iiint_{A} z d V
$$

where A is the region inside the sphere $x^{2}+y^{2}+z^{2}=2$, inside the cylinder $x^{2}+y^{2}=1$, and above the $x y$-plane.
[17 pts]
Solution: It's easiest to solve this problem using cylindrical coordinates. The region is bounded below by the plane $z=0$ and above by the sphere $z=\sqrt{2-r^{2}}$, written in cylindrical coordinates. The projection of A onto the $x y$-plane is a disk of radius 1 centered at the origin. Thus, the integral and its value is $\iiint_{A} z d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\sqrt{2-r^{2}}} z(r d z d r d \theta)=\frac{3 \pi}{4}$.
4. Compute the integral of the field $\vec{F}(x, y)=(x+y) \vec{i}+0 \vec{j}$ along the curve $\vec{c}(t)=$ $\cos t \vec{i}+\sin t \vec{j}$.
[17pts]
Solution: The derivative of $\vec{c}(t)$ is $\frac{d}{d t} \vec{c}(t)=-\sin t \vec{i}+\cos t \vec{j}$ and the vector field written in terms of t is $\vec{F}(\vec{c}(t))=(\cos t+\sin t) \vec{i}+0 \vec{j}$. The integral of \vec{F} over the curve is $\int_{C} \vec{F} \cdot d \vec{s}=\int_{0}^{2 \pi} \vec{F}(\vec{c}(t)) \cdot \frac{d}{d t} \vec{c}(t) d t=\int_{0}^{2 \pi}\left(-\sin t \cos t-\sin ^{2} t\right) d t=-\pi$.
5. Find the maximum and minimum of the function $f(x, y, z)=2 x-3 y+z$ subject to the condition $x^{2}+3 y^{2}+z^{2}=1$.
[16 pts]
Solution: We'll use the Method of Lagrange Multipliers to solve the problem. We must solve the system:

$$
2=\lambda(2 x), \quad-3=\lambda(6 y), \quad 1=\lambda(2 z), \quad x^{2}+3 y^{2}+z^{2}=1
$$

Solving the first three equations for x, y, and z in terms of λ we get $x=\frac{1}{\lambda}, y=-\frac{1}{2 \lambda}$, $z=\frac{1}{2 \lambda}$. After plugging these into the fourth equation we get:

$$
\left(\frac{1}{\lambda}\right)^{2}+3\left(-\frac{1}{2 \lambda}\right)^{2}+\left(\frac{1}{2 \lambda}\right)^{2}=1 \quad \Longleftrightarrow \quad \lambda^{2}=2 \quad \Longleftrightarrow \quad \lambda= \pm \sqrt{2}
$$

The corresponding values of x, y, and z are $x= \pm \frac{1}{\sqrt{2}}, \quad y=\mp \frac{1}{2 \sqrt{2}}, \quad z= \pm \frac{1}{2 \sqrt{2}}$. The values of $f(x, y, z)$ at each point are

$$
\begin{gathered}
f\left(\frac{1}{\sqrt{2}},-\frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right)=2\left(\frac{1}{\sqrt{2}}\right)-3\left(-\frac{1}{2 \sqrt{2}}\right)+\left(\frac{1}{2 \sqrt{2}}\right)=\sqrt{8} \\
f\left(-\frac{1}{\sqrt{2}}, \frac{1}{2 \sqrt{2}},-\frac{1}{2 \sqrt{2}}\right)=2\left(-\frac{1}{\sqrt{2}}\right)-3\left(\frac{1}{2 \sqrt{2}}\right)+\left(-\frac{1}{2 \sqrt{2}}\right)=-\sqrt{8}
\end{gathered}
$$

Therefore, the minimum value of f is $-\sqrt{8}$ and the maximum is $\sqrt{8}$.
6. For the vector field $\vec{F}(x, y)=(x+y) \vec{i}+(x-y) \vec{j}$, find a function $\varphi(x, y)$ with $\operatorname{grad} \varphi=\vec{F}$ or use the partial derivative test to show that such a function does not exist. [16 pts]

Solution: By inspection, the function $\varphi(x, y)=\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2}+C$ is a potential function for $\vec{F}(x, y)$. To check this, we take the gradient of φ and find that

$$
\operatorname{grad} \varphi=(x+y) \vec{i}+(x-y) \vec{j}=\vec{F}
$$

