1. To find an equation for the tangent plane we need a vector $\overrightarrow{\mathbf{n}}$ that is normal to the plane. This vector is found by taking the gradient of $F(x, y, z)$ and evaluating it at the given point $(1,-3,2)$. The gradient is $\nabla F=\langle 8 x,-2 y, 6 z\rangle$. Thus, the normal vector is $\overrightarrow{\mathbf{n}}=\nabla F(1,-3,2)=\langle 8,6,12\rangle$ and an equation for the tangent plane is $8(x-1)+6(y+3)+12(z-2)=0$.
2. (a) The gradient of f is $\nabla f=\langle 2 x-z+y z, x z,-x+x y\rangle$. At the point $(1,1,1)$ we have $\nabla f(1,1,1)=\langle 2,1,0\rangle$. The rate of change of f at $(1,1,1)$ in the direction of $\hat{\mathbf{v}}$ is $D_{\mathbf{v}} f(1,1,1)=\nabla f(1,1,1) \cdot \hat{\mathbf{v}}=\langle 2,1,0\rangle \cdot \frac{1}{\sqrt{6}}\langle 2,-1,1\rangle=\frac{3}{\sqrt{6}}$.
(b) The direction of most rapid increase of f at $(1,1,1)$ is $\hat{\mathbf{u}}=\frac{\nabla f}{\|\nabla f\|}=\frac{\langle 2,1,0\rangle}{\sqrt{5}}$. The maximum rate of change of f at the point is $\|\nabla f\|=\sqrt{5}$.
(c) When the position is $(1,1,1)$, we know that $t=1$ since $\overrightarrow{\mathbf{p}}(1)=\langle 1,1,1\rangle$. The velocity is $\overrightarrow{\mathbf{p}}^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle$. At $t=1$ we have $\overrightarrow{\mathbf{p}}^{\prime}(1)=\langle 1,2,3\rangle$. Thus, the rate of change of temperature f with respect to time t at $t=1$ is $\left.\frac{d f}{d t}\right|_{t=1}=\vec{\nabla} f(1,1,1) \cdot \overrightarrow{\mathbf{p}}^{\prime}(1)=\langle 2,1,0\rangle \cdot\langle 1,2,3\rangle=4$.
3. To find the critical points, we must solve the system of equations $f_{x}=4 x^{3}+4 y=0$, $f_{y}=4 y^{3}+4 x=0$. Solving the first equation for y we get $y=-x^{3}$. Plugging this into the second equation and simplifying gives us $x^{9}-x=x\left(x^{8}-1\right)=0$. There are only 3 real solutions: $x=0, x= \pm 1$. Using $y=-x^{3}$ we find that $y=0$ when $x=0$, $y=-1$ when $x=1$, and $y=1$ when $x=-1$. Thus, the critical points are $(0,0)$, $(1,-1)$, and $(-1,1)$.

To classify each point, we use the Second Derivative Test. The discriminant function $D(x, y)$ is $D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=\left(12 x^{2}\right)\left(12 y^{2}\right)-4^{2}=144 x^{2} y^{2}-16$. Its values at the critical points are $D(0,0)=-16, D(1,-1)=128$, and $D(-1,1)=128$. Since $D(0,0)<0$, the point $(0,0)$ is a saddle point. Since $D(1,-1)>0$ and $f_{x x}(1,-1)=$ $12>0$, the point $(1,-1)$ corresponds to a local minimum. Finally, since $D(-1,1)>0$ and $f_{x x}(-1,1)=12>0$, the point $(-1,1)$ corresponds to a local minimum.
4. (a) Using the method of Lagrange multipliers, the system of equations that needs to be solve to determine the maximum value of f is

$$
3 x^{2}=\lambda(2 x), \quad 2 y=\lambda(6 y), \quad-3 z^{2}=\lambda(4 z), \quad x^{2}+3 y^{2}+2 z^{2}=3
$$

(b) Given the list of solutions to the above equations, the maximum value of f is found by evaluating f at the solutions and choosing the largest value.
5. Changing the order of integration and evaluating gives us

$$
\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x=\int_{0}^{1} \int_{0}^{3 y^{2}} e^{y^{3}} d x d y=\int_{0}^{1} 3 y^{2} e^{y^{3}} d y=\left.e^{y^{3}}\right|_{0} ^{1}=e-1
$$

6. To find the surface area we use the parametrization $\Phi(u, v)=\left(u \cos v, u \sin v,-u^{2}\right)$ where $0 \leq u \leq \sqrt{20}$ and $0 \leq v \leq 2 \pi$. The tangent vectors $\overrightarrow{\mathbf{T}}_{u}$ and $\overrightarrow{\mathbf{T}}_{v}$ are

$$
\overrightarrow{\mathbf{T}}_{u}=\frac{\partial \Phi}{\partial u}=\langle\cos v, \sin v,-2 u\rangle, \quad \overrightarrow{\mathbf{T}}_{v}=\frac{\partial \Phi}{\partial v}=\langle-u \sin v, u \cos v, 0\rangle
$$

The normal vector is $\overrightarrow{\mathbf{n}}(u, v)=\overrightarrow{\mathbf{T}}_{u} \times \overrightarrow{\mathbf{T}}_{v}=\left\langle 2 u^{2} \cos v, 2 u^{2} \sin v, u\right\rangle$ and its magnitude is $\|\overrightarrow{\mathbf{n}}(u, v)\|=\sqrt{4 u^{4}+u^{2}}=u \sqrt{4 u^{2}+1}$. The surface area is then

$$
\text { Surface Area }=\iint_{\mathcal{S}}\|\overrightarrow{\mathbf{n}}(u, v)\| d u d v=\int_{0}^{2 \pi} \int_{0}^{\sqrt{20}} u \sqrt{4 u^{2}+1} d u d v=\frac{364 \pi}{3}
$$

