Math 210, Fall 2008
 Exam 2 "Solutions"

1. $[25$ points $(10+10+5)]$

Let $f(x, y, z)=\sin (x y-8)-\ln (z+1)+\frac{2 x}{y-z}$.
(a) Compute the gradient $\vec{\nabla} f$ as a function of x, y, and z.
(b) Find the equation of the tangent plane to the surface $f(x, y, z)=4$ at $(4,2,0)$.
(c) Compute the directional derivative $D_{\hat{\mathbf{u}}} f(4,2,0)$ where $\hat{\mathbf{u}}$ is a unit vector in the direction of $\langle-2,1,0\rangle$.

Solution:

(a) The partial derivatives of f are:

$$
\begin{aligned}
& f_{x}=y \cos (x y-8)+\frac{2}{y-z} \\
& f_{y}=x \cos (x y-8)-\frac{2 x}{(y-z)^{2}} \\
& f_{z}=-\frac{1}{z+1}+\frac{2 x}{(y-z)^{2}}
\end{aligned}
$$

The gradient is then $\vec{\nabla} f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$.
(b) At the point $(4,2,0)$, we have:

$$
\vec{\nabla} f(4,2,0)=\langle 3,2,1\rangle
$$

This vector is perpendicular to the tangent plane. Using this vector and the given point, the equation for the tangent plane is:

$$
3(x-4)+2(y-2)+1(z-0)=0
$$

(c) To compute the directional derivative, we first compute $\hat{\mathbf{u}}$:

$$
\hat{\mathbf{u}}=\frac{\langle-2,1,0\rangle}{\|\langle-2,1,0\rangle\|}=\frac{\langle-2,1,0\rangle}{\sqrt{5}}
$$

The directional derivative at $(4,2,0)$ is then:

$$
D_{\hat{\mathbf{u}}} f=\vec{\nabla} f(4,2,0) \cdot \hat{\mathbf{u}}=\langle 3,2,1\rangle \cdot \frac{\langle-2,1,0\rangle}{\sqrt{5}}=-\frac{4}{\sqrt{5}}
$$

2. [30 points $(10+5+15)$]

Let $f(x, y)=x^{2}+y^{2}-y$, and let \mathcal{D} be the bounded region defined by the inequalities $y \geq 0$ and $y \leq 1-x^{2}$.
(a) Find and classify the critical points of $f(x, y)$.
(b) Sketch the region \mathcal{D}.
(c) Find the absolute maximum and minimum values of f on the region \mathcal{D}, and list the points where these values occur.

Solution:

(a) To find the critical points of f, set the partial derivatives to zero and solve:

$$
\begin{aligned}
& f_{x}=2 x=0 \quad \Rightarrow \quad x=0 \\
& f_{y}=2 y-1=0 \quad \Rightarrow \quad y=\frac{1}{2}
\end{aligned}
$$

Therefore, the only critical point is $\left(0, \frac{1}{2}\right)$. Now calculate the second derivatives:

$$
f_{x x}=2, f_{y y}=2, f_{x y}=0
$$

The discriminant is:

$$
D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=(2)(2)-0^{2}=4
$$

Since $D\left(0, \frac{1}{2}\right)>0$ and $f_{x x}\left(0, \frac{1}{2}\right)>0$, the point $\left(0, \frac{1}{2}\right)$ corresponds to a local minimum.
(b) A plot of the region is shown below:

(c) To find the absolute minimum and maximum values of f on the region, we must find the critical points inside \mathcal{D} and on its boundary. We've already found the critical points in the interior. Let's focus on the boundary.
I. First, on the line $y=0,-1 \leq x \leq 1$ we have:

$$
f(x, 0)=x^{2}+0^{2}-0=x^{2}, \quad-1 \leq x \leq 1
$$

The function has a minimum value at $x=0$ and maximum values at both $x=-1$ and $x=1$. Therefore, the critical points on $y=0$ are $(0,0),(-1,0)$, and $(1,0)$.
II. Second, on the parabola $y=1-x^{2},-1 \leq x \leq 1$ we have:

$$
f\left(x, 1-x^{2}\right)=x^{2}+\left(1-x^{2}\right)^{2}-\left(1-x^{2}\right)=x^{4}, \quad-1 \leq x \leq 1
$$

The function has a minimum value at $x=0$ and maximum values at $x=-1$ and $x=1$. Therefore, the critical points on $y=1-x^{2}$ are $(0,1),(-1,0)$, and $(1,0)$.

Evaluating f at each critical point we find:

$$
\begin{aligned}
f\left(0, \frac{1}{2}\right) & =0^{2}+\left(\frac{1}{2}\right)^{2}-\frac{1}{2}=-\frac{1}{4} \\
f(0,0) & =0^{2}+0^{2}-0=0 \\
f(-1,0) & =(-1)^{2}+0^{2}-0=1 \\
f(1,0) & =1^{2}+0^{2}-0=1 \\
f(0,1) & =0^{2}+1^{2}-1=0
\end{aligned}
$$

Therefore, the absolute minimum of f is $-\frac{1}{4}$ and the absolute maximum is 1 .
3. [15 points $(5+10)]$

Consider the iterated integral $\int_{0}^{\sqrt{\pi}} \int_{x}^{\sqrt{\pi}} \cos \left(y^{2}\right) d y d x$.
(a) Sketch the region of integration.
(b) Compute the integral. (Hint: First reverse the order of integration.)

Solution:

(a) A plot of the region is shown below:

(b) Changing the order of integration and solving, we get:

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi}} \int_{x}^{\sqrt{\pi}} \cos \left(y^{2}\right) d y d x & =\int_{0}^{\sqrt{\pi}} \int_{0}^{y} \cos \left(y^{2}\right) d x d y \\
& =\int_{0}^{\sqrt{\pi}}\left[x \cos \left(y^{2}\right)\right]_{0}^{y} d y \\
& =\int_{0}^{\sqrt{\pi}} y \cos \left(y^{2}\right) d y \\
& =\left[\frac{1}{2} \sin \left(y^{2}\right)\right]_{0}^{\sqrt{\pi}} \\
& =\frac{1}{2}[\sin (\pi)-\sin 0] \\
& =0
\end{aligned}
$$

4. $[30$ points $(10+10+10)]$

Let \mathcal{Q} be the part of the unit disk that lies in the second quadrant, i.e.

$$
\mathcal{Q}=\left\{(x, y) \mid x \leq 0 \text { and } y \geq 0 \text { and } x^{2}+y^{2} \leq 1\right\}
$$

(a) Write an iterated integral in polar coordinates that represents the area of \mathcal{Q}, and compute this area.
(b) Compute $\iint_{\mathcal{Q}}\left(3 x^{2}+3 y^{2}\right) d A$.
(c) Compute the average value of $f(x, y)=x^{2}+y^{2}$ over \mathcal{Q} :

$$
\operatorname{avg}(f)=\frac{\iint_{\mathcal{Q}} f(x, y) d A}{\iint_{\mathcal{Q}} 1 d A}
$$

Solution:

(a) The area is:

$$
\text { Area }=\int_{\pi / 2}^{\pi} \int_{0}^{1} r d r d \theta=\frac{\pi}{4}
$$

(b) The integral is:

$$
\begin{aligned}
\iint_{\mathcal{Q}} d A & =\int_{\pi / 2}^{\pi} \int_{0}^{1} 3 r^{2} \cdot r d r d \theta \\
& =3 \int_{\pi / 2}^{\pi} \int_{0}^{1} r^{3} d r d \theta \\
& =3 \int_{\pi / 2}^{\pi}\left[\frac{1}{4} r^{3}\right]_{0}^{1} d \theta \\
& =\frac{3}{4} \int_{\pi / 2}^{\pi} d \theta \\
& =\frac{3}{4}\left(\pi-\frac{\pi}{2}\right) \\
& =\frac{3 \pi}{8}
\end{aligned}
$$

(c) The average of f is:

$$
\operatorname{avg}(f)=\frac{\frac{\pi}{8}}{\frac{\pi}{4}}=\frac{1}{2}
$$

where we used the fact that the numerator is one-third of the answer to part (b) and the denominator is the area which we found in part (a).

