
MATH 210

Sample exam problems for the 2nd hour exam

Fall 2009

“Solutions”

1. The partial derivatives are fx = 6x + y and fy = x + 4y. At the point (1, 1) we have

fx(1, 1) = 7, fy(1, 1) = 5. The linearization is L(x, y) = 6 + 7(x− 1) + 5(y − 1). Then,

f(1.1, 1.2) ≈ L(1.1, 1.2) = 7.7.

2. We must solve the equations fx = 3x2−3y = 0 and fy = −3x+3y2 = 0. The solutions

are (0, 0) and (1, 1). The discriminant at (0, 0) is D(0, 0) = −9 and the discriminant at

(1, 1) is D(1, 1) = 27. Furthermore, fxx(1, 1) = 6. Therefore, f has a saddle at (0, 0)

and a local minimum at (1, 1).

3. To solve the double integral, it is necessary to change the order of integration:
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4. Using the method of Lagrange multipliers, we must solve the equations:
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Solving the first three equations for x, y, and z, respectively, and then plugging into
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The minimum value of f is −
√

14 at P2 and the maximum value of f is
√

14 at P1.

5. Let F (x, y, z) = x2 + y3 − 2z. The gradient is
−→∇F = 〈2x, 3y2,−2〉. At the point

(1, 2, 4) we have
−→∇F (1, 2, 4) = 〈2, 12,−2〉. The equation for the tangent plane is

2(x − 1) + 12(y − 2) − 2(z − 4) = 0.



6. The gradient is
−→∇F = 〈6x, 2y,−8z〉. At the point (1,−4, 3) we have

−→∇F (1,−4, 3) =

〈6,−8,−24〉. The equation for the tangent plane is 6(x−1)−8(y +4)−24(z−3) = 0.

7. We must solve the equations fx = x2 − y = 0 and fy = 2y − x = 0. The solutions are

(0, 0) and (1

2
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4
). The discriminant at (0, 0) is D(0, 0) = −1 and the discriminant at
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8. Using the method of Lagrange multipliers, we must solve the equations:

2x = λ(2x), −1 = λ(2y), x2 + y2 = 4

The first equation tells us that x = 0 or λ = 1. If x = 0, then the third equation tells

us that y = ±2. If λ = 1, then the second equation tells us that y = −1
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equation tells us that x = ±
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The minimum value of f is −1 at P1 and the maximum value of f is 17

4
at P3 and P4.

9. The projection of the region onto the xy-plane is the portion of the circle of radius 1

centered at (0, 0) in the first quadrant. Therefore, the volume is:
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10. Using the method of Lagrange multipliers, we must solve the equations:

2x = λ(2x), −2y = λ(2y), 4z = λ(2z), x2 + y2 + z2 = 1

There are 6 sets of solutions to these equations:

P1 = (0, 0, 1), P2 = (0, 0,−1), P3 = (0, 1, 0)

P4 = (0,−1, 0), P5 = (1, 0, 0), P6 = (−1, 0, 0)

The minimum value of f is −1 at P3 and P4 and the maximum value of f is 2 at P1

and P2.



11. The region is bounded below by z = 0 and above by z = y = r sin θ. The projection

of W onto the xy-plane is the upper half of the circle of radius 2 centered at (0, 0).

Therefore, the integral is:
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projection of B onto the xy-plane is the circle of radius 1 centered at (0, 0). Therefore,
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13. The projection of the region onto the xy-plane is the circle of radius 1 centered at

(0, 0). Therefore, the volume is:
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14. The first partial derivatives of f are
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15. The projection of A onto the xy-plane is the portion of the circle of radius 1 centered

at (0, 0) in the first quadrant. Using polar coordinates, the average value of f on A is:
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16. The region of integration is a triangle bounded by the lines y = 0, y = x, and x+y = 2.



The integral is then:
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17. (a) fx = 2x − 1 = 0, fy = 2y = 0 =⇒ x = 1

2
, y = 0

(c) On the boundary x = 0, the function becomes f(0, y) = y2 and attains a maximum

value of 1 at y = ±1 and a minimum value of 0 at y = 0. On the boundary

x = 1 − y2, the function becomes f(1 − y2, y) = (1 − y2)2 − (1 − y2) + y2 = y4

and attains a maximum value of 1 at y = ±1 and a minimum value of 0 at y = 0.

Therefore, we have:
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The minimum value of f is −1
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18. The gradient of F is
−→∇F =
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〉

. At the point (1, 2) we

have
−→∇F (1, 2) = 〈6,−4〉. The direction of fastest growth is:
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19. The gradient of f is
−→∇f = 〈2xy − ex+y, x2 − ex+y〉. The derivative of −→r (t) is −→r ′(t) =

〈−e−t,− sin t〉. At t = 0 we have −→r (0) = 〈1, 1〉 =⇒ x = 1, y = 1 and −→
r ′(0) = 〈−1, 0〉.

Using the Chain Rule, we have:
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20. In spherical coordinates, the equation for sphere is ρ = 1 and the equation for the cone

is φ = π
4
. Therefore, the mass is:
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