## MATH 210 <br> Sample exam problems for the 2nd hour exam <br> Fall 2009 <br> "Solutions"

1. The partial derivatives are $f_{x}=6 x+y$ and $f_{y}=x+4 y$. At the point $(1,1)$ we have $f_{x}(1,1)=7, f_{y}(1,1)=5$. The linearization is $L(x, y)=6+7(x-1)+5(y-1)$. Then, $f(1.1,1.2) \approx L(1.1,1.2)=7.7$.
2. We must solve the equations $f_{x}=3 x^{2}-3 y=0$ and $f_{y}=-3 x+3 y^{2}=0$. The solutions are $(0,0)$ and $(1,1)$. The discriminant at $(0,0)$ is $D(0,0)=-9$ and the discriminant at $(1,1)$ is $D(1,1)=27$. Furthermore, $f_{x x}(1,1)=6$. Therefore, $f$ has a saddle at $(0,0)$ and a local minimum at $(1,1)$.
3. To solve the double integral, it is necessary to change the order of integration:

$$
\int_{0}^{2} \int_{0}^{x^{2}} \sin \left(x^{3}\right) d y d x=\int_{0}^{2} x^{2} \sin \left(x^{3}\right) d x=-\left.\frac{1}{3} \cos \left(x^{3}\right)\right|_{0} ^{2}=\frac{1}{3}-\frac{1}{3} \cos 8
$$

4. Using the method of Lagrange multipliers, we must solve the equations:

$$
1=\lambda\left(\frac{1}{2} x\right), \quad 1=\lambda\left(\frac{2}{9} y\right), \quad-1=\lambda(2 z), \quad \frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}=1
$$

Solving the first three equations for $x, y$, and $z$, respectively, and then plugging into the last equation we get $\lambda= \pm \sqrt{\frac{7}{2}}$. Substituting each value of $\lambda$ back into the first three equations, we get the points

$$
P_{1}=\left(2 \sqrt{\frac{2}{7}}, \frac{9}{2} \sqrt{\frac{2}{7}},-\frac{1}{2} \sqrt{\frac{2}{7}}\right), \quad P_{2}=\left(-2 \sqrt{\frac{2}{7}},-\frac{9}{2} \sqrt{\frac{2}{7}}, \frac{1}{2} \sqrt{\frac{2}{7}}\right)
$$

The minimum value of $f$ is $-\sqrt{14}$ at $P_{2}$ and the maximum value of $f$ is $\sqrt{14}$ at $P_{1}$.
5. Let $F(x, y, z)=x^{2}+y^{3}-2 z$. The gradient is $\vec{\nabla} F=\left\langle 2 x, 3 y^{2},-2\right\rangle$. At the point $(1,2,4)$ we have $\vec{\nabla} F(1,2,4)=\langle 2,12,-2\rangle$. The equation for the tangent plane is $2(x-1)+12(y-2)-2(z-4)=0$.
6. The gradient is $\vec{\nabla} F=\langle 6 x, 2 y,-8 z\rangle$. At the point $(1,-4,3)$ we have $\vec{\nabla} F(1,-4,3)=$ $\langle 6,-8,-24\rangle$. The equation for the tangent plane is $6(x-1)-8(y+4)-24(z-3)=0$.
7. We must solve the equations $f_{x}=x^{2}-y=0$ and $f_{y}=2 y-x=0$. The solutions are $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{4}\right)$. The discriminant at $(0,0)$ is $D(0,0)=-1$ and the discriminant at $\left(\frac{1}{2}, \frac{1}{4}\right)$ is $D\left(\frac{1}{2}, \frac{1}{4}\right)=1$. Furthermore, $f_{x x}\left(\frac{1}{2}, \frac{1}{4}\right)=1$. Therefore, $f$ has a saddle at $(0,0)$ and a local minimum at $\left(\frac{1}{2}, \frac{1}{4}\right)$.
8. Using the method of Lagrange multipliers, we must solve the equations:

$$
2 x=\lambda(2 x), \quad-1=\lambda(2 y), \quad x^{2}+y^{2}=4
$$

The first equation tells us that $x=0$ or $\lambda=1$. If $x=0$, then the third equation tells us that $y= \pm 2$. If $\lambda=1$, then the second equation tells us that $y=-\frac{1}{2}$ and the third equation tells us that $x= \pm \frac{\sqrt{15}}{2}$. Therefore, we must evaluate $f$ at the four points

$$
P_{1}=(0,2), \quad P_{2}=(0,-2), \quad P_{3}=\left(\frac{\sqrt{15}}{2},-\frac{1}{2}\right), \quad P_{4}=\left(-\frac{\sqrt{15}}{2},-\frac{1}{2}\right)
$$

The minimum value of $f$ is -1 at $P_{1}$ and the maximum value of $f$ is $\frac{17}{4}$ at $P_{3}$ and $P_{4}$.
9. The projection of the region onto the $x y$-plane is the portion of the circle of radius 1 centered at $(0,0)$ in the first quadrant. Therefore, the volume is:

$$
V=\iint_{\mathcal{D}}\left(1-x^{2}-y^{2}\right) d A=\int_{0}^{\pi / 2} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta=\frac{\pi}{8}
$$

10. Using the method of Lagrange multipliers, we must solve the equations:

$$
2 x=\lambda(2 x), \quad-2 y=\lambda(2 y), \quad 4 z=\lambda(2 z), \quad x^{2}+y^{2}+z^{2}=1
$$

There are 6 sets of solutions to these equations:

$$
\begin{array}{ll}
P_{1}=(0,0,1), \quad P_{2}=(0,0,-1), & P_{3}=(0,1,0) \\
P_{4}=(0,-1,0), \quad P_{5}=(1,0,0), & P_{6}=(-1,0,0)
\end{array}
$$

The minimum value of $f$ is -1 at $P_{3}$ and $P_{4}$ and the maximum value of $f$ is 2 at $P_{1}$ and $P_{2}$.
11. The region is bounded below by $z=0$ and above by $z=y=r \sin \theta$. The projection of $\mathcal{W}$ onto the $x y$-plane is the upper half of the circle of radius 2 centered at $(0,0)$. Therefore, the integral is:

$$
\iiint_{\mathcal{W}}\left(x^{2}+y^{2}\right)^{1 / 2} d V=\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{r \sin \theta} r \cdot r d z d r d \theta=8
$$

12. The region is bounded below by $z=-\sqrt{1-r^{2}}$ and above by $z=\sqrt{1-r^{2}}$. The projection of $\mathcal{B}$ onto the $x y$-plane is the circle of radius 1 centered at ( 0,0 ). Therefore, the integral is:

$$
\iiint_{\mathcal{B}} x^{2} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{-\sqrt{1-r^{2}}}^{\sqrt{1-r^{2}}}(r \cos \theta)^{2} \cdot r d z d r d \theta=\frac{4 \pi}{15}
$$

13. The projection of the region onto the $x y$-plane is the circle of radius 1 centered at $(0,0)$. Therefore, the volume is:

$$
V=\iint_{\mathcal{D}}\left[\left(2-r^{2}\right)-r^{2}\right] d A=\int_{0}^{2 \pi} \int_{0}^{1}\left(2-2 r^{2}\right) \cdot r d r d \theta=\pi
$$

14. The first partial derivatives of $f$ are $\frac{\partial f}{\partial x}=y e^{x y}$ and $\frac{\partial f}{\partial y}=x e^{x y}$. The equations for polar coordinates are $x=r \cos \theta$ and $y=r \sin \theta$. Therefore, $\frac{\partial x}{\partial r}=\cos \theta$ and $\frac{\partial y}{\partial r}=\sin \theta$. Therefore, the partial derivative $\frac{\partial f}{\partial r}$ is:

$$
\frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}=(2 r \sin \theta \cos \theta) e^{r^{2} \sin \theta \cos \theta}=\frac{2 x y}{\sqrt{x^{2}+y^{2}}} e^{x y}
$$

15. The projection of $\mathcal{A}$ onto the $x y$-plane is the portion of the circle of radius 1 centered at $(0,0)$ in the first quadrant. Using polar coordinates, the average value of $f$ on $\mathcal{A}$ is:

$$
\bar{f}=\frac{\iint_{\mathcal{A}} f(x, y) d A}{\iint_{\mathcal{A}} d A}=\frac{\int_{0}^{\pi / 2} \int_{0}^{1}(2+r \cos \theta-r \sin \theta) \cdot r d r d \theta}{\int_{0}^{\pi / 2} \int_{0}^{1} r d r d \theta}=2
$$

16. The region of integration is a triangle bounded by the lines $y=0, y=x$, and $x+y=2$.

The integral is then:

$$
\iint_{\mathcal{D}} \frac{x}{y+1} d A=\int_{0}^{1} \int_{y}^{2-y} \frac{x}{y+1} d x d y=4 \ln 2-2
$$

17. (a) $f_{x}=2 x-1=0, f_{y}=2 y=0 \quad \Longrightarrow \quad x=\frac{1}{2}, y=0$
(c) On the boundary $x=0$, the function becomes $f(0, y)=y^{2}$ and attains a maximum value of 1 at $y= \pm 1$ and a minimum value of 0 at $y=0$. On the boundary $x=1-y^{2}$, the function becomes $f\left(1-y^{2}, y\right)=\left(1-y^{2}\right)^{2}-\left(1-y^{2}\right)+y^{2}=y^{4}$ and attains a maximum value of 1 at $y= \pm 1$ and a minimum value of 0 at $y=0$. Therefore, we have:

$$
f\left(\frac{1}{2}, 0\right)=-\frac{1}{4}, \quad f(0,0)=0, \quad f(0, \pm 1)=1, \quad f(1,0)=0
$$

The minimum value of $f$ is $-\frac{1}{4}$ at $\left(\frac{1}{2}, 0\right)$ and the maximum value of $f$ is 1 at $(0, \pm 1)$.
18. The gradient of $F$ is $\vec{\nabla} F=\left\langle 2 x+4 x^{2} e^{4 x-y^{2}},-2 x^{2} y e^{4 x-y^{2}}\right\rangle$. At the point $(1,2)$ we have $\vec{\nabla} F(1,2)=\langle 6,-4\rangle$. The direction of fastest growth is:

$$
\hat{\mathbf{u}}=\frac{\vec{\nabla} F(1,2)}{\|\vec{\nabla} F(1,2)\|}=\left\langle\frac{3}{\sqrt{13}},-\frac{2}{\sqrt{13}}\right\rangle
$$

19. The gradient of $f$ is $\vec{\nabla} f=\left\langle 2 x y-e^{x+y}, x^{2}-e^{x+y}\right\rangle$. The derivative of $\overrightarrow{\mathbf{r}}(t)$ is $\overrightarrow{\mathbf{r}}^{\prime}(t)=$ $\left\langle-e^{-t},-\sin t\right\rangle$. At $t=0$ we have $\overrightarrow{\mathbf{r}}(0)=\langle 1,1\rangle \Longrightarrow x=1, y=1$ and $\overrightarrow{\mathbf{r}}^{\prime}(0)=\langle-1,0\rangle$. Using the Chain Rule, we have:

$$
\left.\frac{d}{d t} f(\overrightarrow{\mathbf{r}}(t))\right|_{t=0}=\vec{\nabla} f(1,1) \cdot \overrightarrow{\mathbf{r}}^{\prime}(0)=\left\langle 2-e^{2}, 1-e^{2}\right\rangle \cdot\langle-1,0\rangle=e^{2}-2
$$

20. In spherical coordinates, the equation for sphere is $\rho=1$ and the equation for the cone is $\phi=\frac{\pi}{4}$. Therefore, the mass is:

$$
\operatorname{mass}=\iiint_{\mathcal{A}} f(x, y, z) d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{1} \rho \cdot \rho^{2} \sin \phi d \rho d \phi d \theta=\frac{\pi}{2}\left(1-\frac{\sqrt{2}}{2}\right)
$$

