MATH 442, MIDTERM REVIEW PROBLEMS

(1) Let c be the helix defined by $c(t)=(A \cos t, A \sin t, B t)$ for some real numbers A and B. Compute the curvature and torsion of c.
(2) Let $c(t)$ be a parametrized curve in \mathbb{R}^{3}, not necessarily unit speed.
(a) Find a formula for the curvature of c as a function of $c^{\prime}(t)$ and $c^{\prime \prime}(t)$. Is this always defined? Why or why not?
(b) Find a formula for the torsion of c as a function of $c^{\prime}(t), c^{\prime \prime}(t)$, and $c^{\prime \prime \prime}(t)$. Is this always defined? Why or why not?
(3) Let S be a regular surface in \mathbb{R}^{3} such that $0 \notin S$. Define a map from S to the unit sphere by sending $p \in S$ to the point $\frac{p}{\|p\|}$.
(a) Show that $p \in S$ is a critical point for this map if and only if the line from p to the origin is tangent to S at p.
(b) Show that if S is the boundary of a convex set containing 0 then S is diffeomorphic to the sphere.
(4) Let c be a regular curve in \mathbb{R}^{2} and let S (called the cylinder over c) be the set of points (x, y, z) such that $(x, y) \in c$. Show that S is a regular surface.
(5) Stereographic projection is the map from the 2 -sphere $x^{2}+y^{2}+z^{2}=1$ with the point $(0,0,-1)$ removed to \mathbb{R}^{2} which is defined by sending a point p on the sphere to (x, y) such that the line through $(x, y, 1)$ and $(0,0,-1)$ passes through p.
(a) Show that this map is a diffeomorpshism
(b) Show that the derivative at every point is conformal, meaning that it does not change the angles between vectors.
(6) Define explicitly a Mobius band as a subset of \mathbb{R}^{3}.
(a) Prove the set you have defined is a regular surface.
(b) Prove it is non-orientable.
(c) Compute its area.

