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Abstract

We characterize the “best” model geometries for the class of virtually free groups,
and we show that there is a countable infinity of distinct “best” model geometries
in an appropriate sense–these are the maximally symmetric trees. The first theorem
gives several equivalent conditions on a bounded valence, cocompact tree T without
valence 1 vertices saying that T is maximally symmetric. The second theorem gives
general constructions for maximally symmetric trees, showing for instance that every
virtually free group has a maximally symmetric tree for a model geometry.

1 Introduction

A model geometry for a finitely generated group G is a proper metric space X on which G
acts properly and coboundedly by isometries; equivalently, there is a discrete, cocompact,
finite kernel representation G → Isom X. The group G with its word metric is quasi-
isometric to each of its (coarse) geodesic model geometries (see §2.3).

Given a quasi-isometry class C of finitely generated groups, one can ask:

(1) Is there a common (coarse) geodesic model geometry X for every group in C?

(2) Is there a common locally compact group Γ, in which every group of C has a discrete,
cocompact, finite kernel representation?

A “yes” to (1) implies a “yes” to (2), with or without the word “coarse”. We show in
Corollary 7 that the coarse version of (1) is equivalent to (2).

Many quasi-isometric rigidity theorems take the form of a positive answer to these
questions. For example, if X is an irreducible nonpositively curved symmetric space
then X is itself a model geometry for every group quasi-isometric to X. For X = Hn

see [Sul81], [Tuk86], [CC92], and for CHn see [KR95], [Cho96]; in these cases, every
cobounded quasi-action on X is quasiconjugate to an isometric action on X. For QHn

and the Cayley hyperbolic plane see [Pan89], and for X of higher rank see [KL97] and
also [EF97]; in these cases, every quasi-isometry is a bounded distance from an isometry.

By contrast, consider the class of groups VF which are virtually free of finite rank
≥ 2. VF is a single quasi-isometry class, as follows from Stallings ends theorem [Sta68],
[SW79] and Dunwoody’s accessibility theorem [Dun85]. VF coincides with the class of
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fundamental groups of finite graphs of finite groups [KPS73]. The typical model ge-
ometries for VF are bounded valence, bushy trees; any quasi-action on such a tree T
is quasiconjugate to an isometric action on a possibly different tree T ′ ([MSW00]; see
Theorem 8 below). For the class VF , questions (1), (2) have a negative answer [MSW00]:
for primes p 6= q ≥ 3 the groups Z/p ∗ Z/p and Z/q ∗ Z/q have no discrete, cocompact,
virtually faithful representations in the same locally compact group.

In lieu of a single model geometry for VF , we describe “best” model geometries X,
namely those which are “maximally symmetric”. Roughly speaking this means that any
continuous, proper, cocompact embedding of IsomX into another locally compact group
is an isomorphism. This is asking for too much, though: one can always take the product
of X with a symmetric compact metric space; or equivariantly attach to each point of
some discrete orbit of X a symmetric pointed compact metric space. We should therefore
avoid compact normal subgroups, and for VF this is acheived by restricting to bounded
valence, bushy trees with no valence 1 vertices. Our main results show how to recognize
maximally symmetric trees within this class, in quasi-isometric, topological, and graph
theoretical terms, and how to construct maximally symmetric trees wherever needed; for
example, each group in VF has some maximally symmetric tree as a model geometry.

Statements of results Quasi-isometries are reviewed in §2.2. For any metric space
X the quasi-isometry group QI(X) is the group of self quasi-isometries of X modulo
identification of quasi-isometries which have bounded distance in the sup norm. Any
quasi-isometry f : X → Y induces an isomorphism adf : QI(X) → QI(Y ), and so any
finitely generated group with the word metric has the same quasi-isometry group as any
of its model geometries.

Let X be a δ-hyperbolic for some δ ≥ 0. A subgroup H < QI(X) is uniform if
its elements can be represented by quasi-isometries of X with uniform quasi-isometry
constants. Equivalently, H can be represented by a quasi-action on X; moreover, any
two such quasi-actions differ in the sup norm by a bounded amount. We say that H is
cobounded if a representing quasi-action is cobounded.

A tree T has bounded valence if each vertex has valence ≤ C for some constant C,
and T is bushy if each vertex is a uniformly bounded distance from some vertex v such
that at least three components of T −v are unbounded. Any two bounded valence, bushy
trees are quasi-isometric, and so their quasi-isometry groups are isomorphic. A bounded
valence, bushy tree T is cocompact if Isom T acts cocompactly on T , or equivalently if
the image of the natural homomorphism IsomT → QI(T ) is cobounded. A thorn of T is
a valence 1 vertex; if T is thornless then Isom T has no compact normal subgroups, and
the homomorphism Isom T → QI(T ) is injective, among other nice properties.

Theorem 1 (Characterizing maximally symmetric trees). For any bounded valence,
bushy, cocompact, thornless tree T , the following are equivalent:

• Isom T is a maximal uniform cobounded subgroup of QI(T ).

• For any bounded valence, bushy, thornless tree T ′, any continuous, proper, cocom-
pact embedding Isom T → Isom T ′ is an isomorphism.

• For any locally compact group G without compact normal subgroups, any continuous,
proper, cocompact embedding Isom T → G is an isomorphism.
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Such trees T are called maximally symmetric.
The proof of Theorem 1 is entirely abstract and nonconstructive: it does not exhibit

the existence of a single maximally symmetric tree, let alone showing that they are model
geometries for virtually free groups. These facts follow from Theorem 2 whose proof is
concrete and constructive; as a byproduct, we obtain a finitistic method for enumerating
the isometry types of maximally symmetric trees.

A bounded valence, bushy, cocompact tree T is said to be index 1 normalized if, for
every vertex v and every incident edge e, the stabilizers of v and e in Isom T satisfy
[Stab(v) : Stab(e)] ≥ 2. Note that index 1 normalized implies thornless.

Theorem 2 (Existence of maximally symmetric trees). Fix a bounded valence, bushy
tree τ .

(1) Every uniform cobounded subgroup of QI(τ) is contained in a maximal uniform
cobounded subgroup.

(2) For every maximal uniform cobounded subgroup G < QI(τ) there exists a maximally
symmetric tree T which is index 1 normalized, and there exists a quasi-isometry
f : T → τ , such that G = adf (Isom T ). Moreover T and f are uniquely specified
in the following sense: if G = adf ′(Isom T ′) for another index 1 normalized T ′

and quasi-isometry f ′ : T ′ → τ , then there exists an isometry h : T → T ′ such that
adf = adf ′ ◦ adh.

(3) There is a natural one-to-one correspondence between conjugacy classes of maximal
uniform cobounded subgroups of QI(τ) and isometry classes of index 1 normalized,
maximally symmetric trees T .

(4) There is a countable infinity of such isometry classes; in fact there is a countable
infinity of both unimodular and nonunimodular isometry classes.

Part (2) can be interpreted as saying that any maximally symmetric model geometry
in the quasi-isometry class of τ is, in a certain sense, equivalent to a maximally symmetric
tree. In part (4), unimodularity of a tree T means that the locally compact group Isom T
is unimodular, i.e. each left invariant Haar measure on IsomT is also right invariant.
Unimodularity was shown by Bass and Kulkarni [BK90] to be equivalent to the existence
of a discrete, cocompact subgroup of Isom T .

Corollary 3. For every group G ∈ VF there exists a maximally symmetric tree T which
is a model geometry for G, and so G is the fundamental group of a finite graph of finite
groups Γ = T/G whose Bass-Serre tree T is maximally symmetric.

More information about Corollary 3 can be extracted from the proof of Theorem 2,
namely an algorithm which inputs any finite graph of finite groups, and outputs another
one with the same fundamental group whose Bass-Serre tree is maximally symmetric.

Our results should be compared and contrasted with results concerning an irreducible,
nonpositively curved symmetric space X. For instance, recent results of Alex Furman
[Fur00] show that X is “maximally symmetric” in a manner very similar to that described
in Theorem 1. Contrasting with our Theorem 2, Furman’s results can be interpreted as
saying that X is the unique best model geometry in its quasi-isometry class; also, the
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quasi-isometric rigidity theorems quoted above show that QI(X) has a unique maximal
uniform cobounded subgroup up to conjugacy, namely IsomX.

The proofs of Theorems 1 and 2 use the rigidity theorem for quasi-actions on trees from
[MSW00], the theory of edge-indexed graphs from [Bas93] and [BK90], and tree techniques
reminiscent of [BL94]. In particular, one the main technical steps is Proposition 22, which
gives conditions on the quotient graphs of bounded valence, bushy, thornless trees T ,
T ′ that are sufficient to prove that any continuous, proper, cocompact monomorphism
Isom T → Isom T ′ is an isomorphism induced by an isometry T → T ′. Proposition 22 is
related to a result of Bass and Lubotzky ([BL94], Corollary 4.8(d)), which obtains the
same conclusion under somewhat stronger conditions.

The proof of Theorem 2 gives a finitistic characterization of maximally symmetric trees
in terms of edge-indexed graphs; see Corollary 24. For example, the bihomogeneous tree
Tp,q of alternating valences p > q ≥ 2 is maximally symmetric; the quotient edge-indexed
graph Tp,q/ Isom Tp,q has two vertices and one edge, with one end of index p and the other
end of index q. In general, to each bounded valence, bushy tree T there corresponds a
quotient edge-indexed graph T/ Isom T ; conversely to each edge-indexed graph Γ there
corresponds a “universal covering tree” T and a deck transformation group D(Γ) <
Isom T . With respect to this correspondence, Corollary 24 describes a certain subclass
of edge-indexed graphs Γ whose isomorphism classes are in one-to-one correspondence
with maximally symmetric trees. Also, Corollary 21 gives a simple algorithm which,
given an edge indexed graph Γ, decides whether Γ belongs to this subclass, and if not
then the algorithm computes another edge-indexed graph Γ′ which does belong, and for
which there is an nonsurjective embedding D(Γ) < D(Γ′) which is continuous, proper,
and cocompact. This algorithm can be used to prove Corollary 3, starting from a finite
graph of groups Γ with fundamental group G.

In the unimodular case, part (4) of Theorem 2 can be summarized by saying that
there is a countable infinity of “best” geometries for the class VF . Part (4) is proved
by simply giving some examples, but we will improve that by showing in Proposition 25
that any finite graph Γ in which no edge is a loop and no two edges have the same
endpoints has infinitely many distinct edge-indexings, both unimodular and (when Γ is
not a tree) nonunimodular, corresponding to a maximally symmetric tree. The proof of
Proposition 25 will give an effective, one-to-one enumeration of the isometry classes of
maximally symmetric trees.

While our focus in this introduction is mostly on the unimodular case, Theorems 1
and 2 apply also to nonunimodular trees. This may be applicable to graphs of groups
having bounded valence, bushy, Bass-Serre trees, in situations where these trees can be
nonunimodular, such as graphs of Z’s, graphs of Zn’s, etc.

Acknowledgements

The authors are supported in part by the National Science Foundation: the first author
by NSF grant DMS-9803396; the second author by NSF grant DMS-989032; and the third
author by an NSF Postdoctoral Research Fellowship.

4



2 Preliminaries

2.1 Metric spaces

A metric space X is proper if closed balls are compact. This implies that X is complete,
and that the isometry group IsomX is locally compact and Hausdorff in the compact
open topology. An action of a group G on X will always mean an isometric action, that
is, a homomorphism φ : G→ Isom X, usually written g 7→ φg ∈ Isom X. Properness of X
implies that an action is cocompact if and only if it is cobounded, if and only if image(φ) is
a cocompact subgroup of Isom X (a co-P action is one for which there is a P-subset K the
union of whose translates equals the whole space). The action φ is properly discontinuous
if for any two compact sets K, L ⊂ X the set {g ∈ G

∣∣ φg(K) ∩ L 6= ∅} is finite. When
X is proper, an action φ is properly discontinuous if and only if image(φ) is a discrete
subgroup of IsomX and Ker(φ) is a finite subgroup of G.

2.2 Quasi-isometries

A quasi-isometry between two metric spaces X, Y is a map f : X → Y such that for some
constants K ≥ 1, C ≥ 0 we have

1
K

dX(x, y)− C ≤ dY (fx, fy) ≤ KdX(x, y) + C, x, y ∈ X

and for all y ∈ Y there exists x ∈ X such that dY (fx, y) ≤ C. Every K, C quasi-isometry
f : X → Y has a coarse inverse, which is a K, C ′ quasi-isometry f̄ : Y → X such that
dsup(f̄ ◦ f, IdX) ≤ C ′ and dsup(f ◦ f̄ , IdY ) ≤ C ′, where the constant C ′ depends only on
K, C; the notation dsup denotes the sup metric on functions.

The quasi-isometry group of a metric space X, denoted QI(X), is defined as follows.
Let Q̂I(X) denote the set of quasi-isometries, equipped with the operation of composition.
Define f, g ∈ Q̂I(X) to be coarsely equivalent if dsup(f, g) <∞, and let [f ] be the coarse
equivalence class. Note that composition is well-defined on coarse equivalence classes,
thereby making the set of coarse equivalence classes into a group QI(X). The inverse of
the coarse equivalence class of f ∈ Q̂I(X) is the class of any coarse inverse for f .

Given a quasi-isometry f : X → Y there is an induced isomorphism adf : QI(X) →
QI(Y ) defined by adf [g] = [f ◦ g ◦ f̄ ] for any coarse inverse f̄ of f .

A quasi-action of a group G on a metric space X is a map A : G → Q̂I(X), denoted
g 7→ Ag, such that for some K ≥ 1, C ≥ 0 we have: each map Ag is a K, C quasi-
isometry; dsup(AId, Id) < C; and for each g, g′ ∈ G we have dsup(Ag ◦ Ag′ , Agg′) < C.

Postcomposing the quasi-action G
A−→ Q̂I(X) with the quotient map Q̂I(X)→ QI(X) we

obtain the induced homomorphism G→ QI(X). The quasi-action A is cobounded if there
exists a bounded subset D ⊂ X such that for each x ∈ X there is a g ∈ G with Ag(x) ∈ D;
also, A is proper if for each R > 0 there exists an integer M > 0 such that for each x, y ∈ X
the cardinality of the set {g ∈ G

∣∣ d(Ag(x), y) ≤ R} is at most M . Given quasi-actions
A, B of G on metric spaces X, Y respectively, a quasiconjugacy from A to B is a quasi-
isometry f : X → Y such that for some C ≥ 0 we have dsup(f ◦ Ag, Bg ◦ f) ≤ C, for all
g ∈ G; it follows that adf [Ag] = [Bg]. Coboundedness and properness are quasiconjugacy
invariants of quasi-actions.
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For quasi-isometries among hyperbolic metric spaces, boundary values coarsely deter-
mine a quasi-isometry, in the following sense. For any δ, K, C there exists A such that
if f, g : X → Y are K, C quasi-isometries between proper, geodesic, δ-hyperbolic met-
ric spaces X, Y , and if the boundary extensions ∂f, ∂g : ∂X → ∂Y are identical, then
dsup(f, g) ≤ A. It follows that when X is δ-hyperbolic, the following two properties
on a subgroup H < QI(X) are equivalent: H is uniform, meaning that each element
of H is represented by a K, C quasi-isometry for some fixed K ≥ 1, C ≥ 0; H has
an induced quasi-action, namely a quasi-action s : H → Q̂I(X) such that the composi-
tion H

s−→ Q̂I(X) → QI(X) equals the inclusion. When H is uniform, any two induced
quasi-actions s, s′ : H → Q̂I(X) differ by a bounded distance in the sup norm, that is,
sup{dsup(sh, s′h)

∣∣ h ∈ H} < ∞. A uniform subgroup H < QI(X) is cobounded if some
(and hence any) induced quasi-action of H on X is cobounded.

2.3 Coarse geodesic metric spaces

Sections 2.3 and 2.4 contain the proof of Corollary 7, that the coarse version of question (1)
in the introduction is equivalent to question (2). Beyond the basic definitions, most of
the material of these two subsections will not be needed for the rest of the paper.

In a metric space X, a geodesic joining x to y is a path α : [a, b] → X such that
x = α(a), y = α(b), and d(α(s), α(t)) = |s− t| for s, t ∈ [a, b]. We say that X is a
geodesic metric space if any two points are joined by a geodesic.

A coarse path joining x to y is just a sequence x = x0, . . . , xn = y in X; the word
length equals n, and the path length equals

∑n
i=1 d(xi−1, xi). We say that x0, . . . , xn is

a C-coarse path if d(xi−1, xi) ≤ C for i = 1, . . . , n. A C-coarse geodesic is a C-coarse
path whose path length equals the distance between its endpoints. A metric space X is
a coarse geodesic metric space if there exists C ≥ 0 such that any two points are joined
by a C-coarse geodesic.

A proper metric space X is geodesic if and only if d(x, y) is the infimum of the path
lengths of all rectifiable paths joining x to y. The next lemma, applied to the collection
V of closed balls of radius C, shows similarly that a proper metric space X is C-coarse
geodesic if and only if d(x, y) is the infimum of the path lengths of C-coarse geodesics
joining x and y; we need a more general version of this fact for later purposes.

We generalize the notion of a C-coarse path as follows. Let V = {V (x)
∣∣ x ∈ X}

where for each x the set V (x) ⊂ X is a compact neighborhood of x, and the following
symmetry condition holds: x ∈ V (y) if and only if y ∈ V (x). A V-coarse path is a coarse
path x0, . . . , xn such that xi ∈ V (xi−1) for i = 1, . . . , n. We say that X is V-coarsely
connected if any two points x, y ∈ X can be joined by a V-coarse path. In this case
we define the V-word metric µV(x, y) to be the shortest word length of a V-coarse path
joining x to y, and the V-path metric ρV(x, y) to be the infimum of the path lengths of
all V-coarse paths joining x to y.
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Lemma 4. Let X be a proper metric space, and suppose that V = {V (x)} is as above,
and that V satisfies the following:

• X is V-coarsely connected.

• There exists R > r > 0 such that for each x ∈ X,

B(x, r) ⊂ V (x) ⊂ B(x, R)

Then: ρV is a coarse geodesic metric whose restriction to each ball of radius r agrees
with the given metric on X; and the metrics µV and ρV are quasi-isometric, that is, the
identity map is a quasi-isometry between µV and ρV .

Proof. The idea of the proof is that ρV is a “maximal metric” in the sense of Gromov
[Gro93], subject to the constraint that ρV agrees locally with the given metric on X.

Given x, y ∈ X and n ≥ µV(x, y), define ‖x, y‖n to be the infimum of the path lengths
of all V-coarse paths joining x to y which have word length ≤ n. Note that the sequence
‖x, y‖n is nonincreasing and has limit ρV(x, y).

Fix n for the moment. Since X is proper, the infimum defining ‖x, y‖n is acheived
by some V-coarse path x = x0, . . . , xk = y with a minimal word length k = k(n),
µV(x, y) ≤ k ≤ n. Note that the path x0, . . . , xk cannot have a subpath xi−1, xi, xi+1

such that each of d(xi−1, xi), d(xi, xi+1) is ≤ r/2 because then d(xi−1, xi+1) ≤ r which
would produce a V-coarse path x = x0, . . . , xi−1, xi+1, . . . , xk of path length ≤ ‖x, y‖n
whose word length is smaller than k(n), a contradiction. It follows that at least bk(n)/2c
of the distances d(xi−1, xi) are > r/2 (where b•c denotes the greatest integer function).
We therefore have

‖x, y‖n > (k(n)− 1)C/4

Now the sequence k(n) is evidently nondecreasing; moreover, ‖x, y‖n+1 < ‖x, y‖n if
and only if k(n) < k(n + 1) = n + 1. If k(n) is not bounded above it follows that ‖x, y‖n
diverges to +∞, a contradiction. Therefore k(n) is eventually constant, proving that
‖x, y‖n is eventually constant and equal to ρV(x, y). This shows that ρV(x, y) is a coarse
geodesic metric.

Now we compare ρV to µV . Obviously

ρV(x, y) ≤ R · µV(x, y)

For the other direction, we have seen that ρV(x, y) is realized by some V-coarse path of
least word length k, and the argument shows that

µV(x, y) ≤ k <
4
C

ρV(x, y) + 1

♦

2.4 Locally compact, compactly generated groups

All locally compact groups are assumed to be Hausdorff. For example, from the Ascoli-
Arzela theorem it follows that the isometry group of a proper metric space is locally
compact Hausdorff, in the compact open topology.
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The next lemma says that locally compact, compactly generated groups, like finitely
generated groups, have a well-defined geometry up to quasi-isometry. Moreover, just
as finite index implies quasi-isometry among finitely generated groups, “compact index”
implies quasi-isometry among compactly generated groups.

Lemma 5. Let G be a locally compact topological group, G a closed, cocompact subgroup.
Then G is compactly generated if and only if G is compactly generated. Moreover, if
this is so then the inclusion G → G is a quasi-isometry with respect to the compactly
generated word metrics. Finally, any two compactly generated word metrics on G are
quasi-isometric.

Proof. If we substitute “finitely generated” for “compactly generated”, and “finite index”
for “cocompact”, then this is a standard result, and the proof goes through unchanged,
with one caveat. To show that two finite generating sets A, B determine quasi-isometric
word metrics one must prove that A ⊂ Bn and B ⊂ Am for some integers n, m. We must
prove the same when A, B are compact generating sets.

First we reduce to the case of compact generating sets containing a neighborhood of the
identity e. Supposing that A is any compact generating set, it follows that ∪∞i=1A

n = G,
and so by the Baire category theorem some Ai contains an open ball B. Also, some Aj

contains e. Therefore, Ai+j contains a neighborhood of e, and we can replace A by Ai+j .
Letting A, B be two compact generating sets each containing a neighborhood of e, for

each x ∈ B there exists i such that Ai contains a neighborhood of x, and by compactness
of B it follows that B ⊂ Am for some m; similarly A ⊂ Bn. ♦

Remark on the proof Note that R has a compact generating set with empty interior.
Namely, if E is any compact set with empty interior and positive measure, then the set
E − E = {e1 − e2

∣∣ e1, e2 ∈ E} contains a neighborhood of 0, by an application of the
Lebesgue density theorem, and so E ∪ −E generates R and has empty interior.

The disadvantage of Lemma 5 is that a compactly generated word metric does not
determine the correct topology on G: indeed, if the generating set contains a neighborhood
of the origin then the word metric is discrete. We correct this, at the same time obtaining
a coarse geodesic metric, as follows:

Lemma 6. Suppose that G is a locally compact, compactly generated group. Then there
exists a left invariant coarse geodesic metric ρ on G such that ρ yields the given topology
on G and ρ is quasi-isometric to any compactly generated word metric on G.

Proof. By a result of Birkhoff [Bir36] and of Kakutani [Kak36], we know that there exists
a left invariant metric D on G yielding the topology on G. Let V be a compact generating
set for G; by enlarging V we may assume that V contains the D-ball of some radius r > 0
about e, and that V = V −1. Let V = {g · V

∣∣ g ∈ G}. Applying Lemma 4, the V-coarse
geodesic metric ρV agrees with D on each D-ball of radius < r, and ρV is quasi-isometric
to the compactly generated word metric µV . Moreover, ρV is clearly left invariant. ♦

It follows that any group G with a discrete, cocompact, finite kernel representation to
G preserves ρ under the left action of G on G, and so regarding G as a coarse geodesic,
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proper metric space X, we obtain a properly discontinuous, cocompact action of G on X.
This proves:

Corollary 7. Given a collection of groups C, the following are equivalent:

(1) There exists a coarse geodesic metric space X on which each group in C acts properly
discontinuously and cocompactly.

(2) There exists a locally compact group G in which each group of C has a discrete,
cocompact, finite kernel representation.

♦

2.5 Graphs

A graph Γ is a connected 1-complex, and a tree is a contractible graph. A vertex of Γ
means a 0-cell; the set of vertices is denoted Verts(Γ). An edge means a 1-cell, that is, a
component of the complement of the vertices; the set of edges is denoted Edges(Γ). For
each edge e we choose a compact arc e and a characteristic map (e, ∂e) → (Γ,Verts(Γ))
taking int(e) homemorphically to e. Each edge e has two ends in the sense of Freudenthal,
corresponding one-to-one with the endpoints of e, this correspondence being denoted
η ↔ pη; the set of ends of e is denoted Ends(e). Each η ∈ Ends(e) is located at a
particular vertex of Γ, namely the unique limit point in Γ of the end η, identified with
the image of pη under the characteristic map. Denote Ends(Γ) = ∪e∈Edges(Γ) Ends(e).
The set of e ∈ Ends(Γ) located at a particular vertex v ∈ Verts(Γ) is denoted Ends(v);
this corresponds to the “link” of v. We denote Ends(e, v) = Ends(e) ∩ Ends(v), the set
of ends of e located at v, a set of cardinality zero, one, or two. An edge e is called a loop
if there exists v ∈ Verts(Γ) such that Ends(e, v) = Ends(e). Note that we do not adopt
a preferred orientation for an edge, the distinction between the two orientations being
encoded in the two ends.

We impose on each graph Γ a geodesic metric in which edge has length 1. The isometry
group Isom Γ is defined to be the group of cellular isometries of Γ; this coincides with the
usual isometry group except in the single case when Γ is isometric to the real line. The
group Isom Γ, with the compact-open topology, is locally compact Hausdorff. Moreover,
if Isom Γ acts cocompactly on Γ then Isom Γ is compactly generated: letting ∆ be any
finite subgraph of Γ whose translates under Isom Γ cover Γ, the set K∆ = {g ∈ Isom Γ

∣∣
g(∆) ∩∆ 6= ∅} is a compact generating set.

3 Characterizing maximally symmetric trees

Given a bounded valence, bushy, thornless, cocompact tree T , to prove Theorem 1 we
must prove the equivalence of the following properties, which we may then take as the
definition of maximally symmetric:

(1) For any locally compact group G with no compact normal subgroups, any continu-
ous, proper, cocompact monomorphism Isom T → G is an isomorphism.
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(2) For any bounded valence, bushy, thornless tree T ′, any continuous, proper, cocom-
pact monomorphism Isom T → Isom T ′ is an isomorphism.

(3) Isom T is a maximal uniform cobounded subgroup of QI(T ).

Proof that (1) implies (2). Obvious. ♦

Proof that (2) implies (3). Suppose that IsomT < A for some uniform cobounded sub-
group A of QI(T ). Choose an induced cobounded quasi-action s : A→ Q̂I(T ); as remarked
at the end of §2.2, s is unique up to bounded distance in the sup norm. Now we apply
the main result of [MSW00]:

Theorem 8 (Rigidity of quasi-actions on trees). If T is a bounded valence, bushy
tree and s : G → Q̂I(T ) is a quasi-action of a group G on T , then there exists an action
s′ : G→ Isom T ′ of G on a bounded valence, bushy tree T ′, and there exists a quasiconju-
gacy f : T → T ′ from s to s′. ♦

We obtain a quasiconjugacy f : T → T ′ from the quasi-action s : A → Q̂I(T ) to an
injective cobounded action s′ : A → Isom T ′. Restricting to Isom T gives an injective
action s′ : Isom T → Isom T ′ which is quasiconjugate via f to the canonical action of
Isom T on T . Since Isom T is cobounded on T it follows that s′(Isom T ) < Isom T ′ is
cobounded, that is, cocompact, on T ′.

Now we need a lemma from [MSW00]:

Lemma 9. Given a bounded valence, bushy tree T , a sequence (gi) converges in Isom T
if and only if (gi) satisfies the following property:

Coarse convergence There is a number D so that for any v there is an n so that the
set {gi(v)

∣∣ i ≥ n} has diameter at most D.

♦
A convergent sequence gi ∈ Isom T clearly satisfies coarse convergence. Since coarse

convergence is clearly invariant under quasiconjugacy, the image sequence s′(gi) ∈ Isom T ′

also satisfies coarse convergence. Applying Lemma 9 it follows that s′(gi) converges in
Isom T ′, proving that s′ : Isom T → Isom T ′ is continuous. Also, s′ is proper, for suppose
C ⊂ Isom T ′ is compact. Choose a sequence gi ∈ s′−1(C). Passing to a subsequence,
s′(gi) converges to some h ∈ C. It follows that s′(gi) satisfies coarse convergence in T ′,
and again by quasiconjugacy invariance it follows that gi satisfies coarse convergence in
T . Applying Lemma 9 it follows that gi converges in Isom T to some g. By continuity of
s′ we have s′(g) = h and so g ∈ s′−1(C), proving that s′−1(C) is compact and so s′ is
proper.

Having proved that s′ is continuous, proper, and cocompact, applying (2) it follows
that s′ is surjective, which implies that Isom T = A, proving that IsomT is maximal in
QI(T ). ♦

Proof that (3) implies (1). Assuming (3) is true suppose that we have an embedding
ι : Isom T → G as in (1).

Let ∆ be a compact fundamental domain for T and consider the compact generating
set K∆ = {f ∈ Isom T

∣∣ f(∆) ∩ ∆ 6= ∅} for Isom T . The left-invariant word metric on
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Isom T determined by the generating set K∆ is quasi-isometric to the tree T . Specifically,
the map F : T → Isom T , taking a vertex w ∈ T to any isometry Fw ∈ Isom T such that
w ∈ Fw(K∆), is a quasi-isometry from T to Isom T .

We have a quasi-isometry F : T → Isom T , and applying Lemma 5 the injection
ι : Isom T → G is a quasi-isometry. The left action of G on itself is clearly a cobounded
quasi-action, and quasiconjugating via ι ◦F : T → G we obtain a cobounded quasi-action
of G on T . Applying Theorem 8 produces a quasiconjugacy Φ: T → T ′ from the G quasi-
action on T to a cobounded action A : G → Isom T ′ for some bounded valence, bushy
tree T ′.

Repeating the argument above using Lemma 9, the homomorphism G A−→ Isom T ′

is continuous, proper, and cocompact. Properness implies that the kernel is compact,
but the group G having no compact normal subgroup, it follows that G A−→ Isom T ′ is
an embedding. Letting Φ̄ : T ′ → T be a coarse inverse of Φ, this shows that IsomT <
adΦ̄(Isom T ′), and the latter is clearly a uniform, cobounded subgroup of QI(T ). Applying
(3) it follows that IsomT = adΦ̄(Isom T ′), which implies that the composition of injections
Isom T

ι−→ G A−→ Isom T ′ is an isomorphism, and so Isom T
ι−→ G is surjective. ♦

4 Edge indexed graphs

In this section we show how edge-indexed graphs can be used to encode bounded valence
trees. The material on graphs of groups and edge-indexed graphs is taken for the most
part from [Bas93] and [BK90].

4.1 Graphs of groups

For detailed references see [Ser80], [Bas93], and [SW79] for the more topological viewpoint.
We adopt a different notation for graphs than these references.

A graph of groups is a graph Γ together with a vertex group Γv for each v ∈ Verts(Γ),
an edge group Γe for each e ∈ Edges(Γ), and an edge-to-vertex injection γη : Γe → Γv for
each η ∈ Ends(e, v). The fundamental group of Γ is denoted π1Γ, and it acts on the Bass-
Serre tree T . The definitions of π1Γ, of T , and of the action may be given topologically
as in [SW79] or directly in terms of algebra as in [Ser80] or [Bas93], the link between the
two approaches being Van Kampen’s theorem. Here is a brief account of the topological
definitions.

For each vertex v and edge e choose a pointed, connected CW-complex Xv, Xe and
an identification of the fundamental group π1Xv, π1Xe with the respective vertex or edge
group Γv,Γe; and for each end η ∈ Ends(e, v) choose a pointed cellular map ξη : Xe → Xv

inducing the injection γη. Construct a graph of spaces X by gluing up the disjoint union of
the Xv’s and the products Xe×e, where for each end η ∈ Ends(e, v) we glue Xe×pη to Xv

via the gluing (x, pη) ∼ ξη(x) for each x ∈ Xe. For each vertex v of Γ we define π1(Γ, v) to
be π1(X, v0) where v0 ∈ Xv is the base point. There is a natural quotient map q : X → Γ,
which induces a decomposition of X into the point inverse images Xt = q−1(t), t ∈ Γ. Let
X̃ be the universal covering space of X. The components of lifts of decomposition elements
of X defines a decomposition of X̃, and the corresponding decomposition space of X̃ is
the tree T . Choosing a base point ṽ ∈ X̃ lying over v ∈ X determines an identification of
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π1(Γ, v) with the deck transformation group of the covering map X̃ → X, and the action
of π1(Γ, v) respects the decomposition of X̃ and so descends to the required action of π1Γ
on T .

In §4.4 we will review briefly the construction of the Bass-Serre tree given in [Bas93].

4.2 Edge-indexed graphs

An edge-indexing of a connected graph Γ is a function I : Ends(Γ)→ Z+ = {1, 2, 3, . . . }.
The pair (Γ, I) is called an edge-indexed graph. Given v ∈ Verts(Γ), define the valence
of v, as usual, to be the cardinality of Ends(v), and define the total index of v to be

TI(v) =
∑

η∈Ends(v)

I(η)

When the edge-indexing I is understood we will sometimes drop it from the notation and
simply say that Γ is an edge-indexed graph.

For example, there is a forgetful functor which associates, to each graph of groups Γ
having finite index edge-to-vertex injections, an edge-indexing I such that if η ∈ Ends(e, v)
then I(η) = [Γv : γη(Γe)]. In this example, TI(v) equals the valence of any vertex ṽ of
the Bass-Serre tree of Γ such that ṽ lies over v.

To view this example in a slightly different way, let the group G act on a tree T
with quotient graph Γ = T/G; we may view the quotient map T → Γ as a morphism of
graphs, taking vertices to vertices, edges to edges, and ends to ends, as long as we first
subdivide any edge of T which is inverted by G. Given η ∈ Ends(e, v) ⊂ Ends(Γ), choose
η̃ ∈ Ends(ẽ, ṽ) ⊂ Ends(T ) lying over η, and define I(η) = [StabG(v) : StabG(e)]; note
that I(η) is independent of the choice of η̃.

4.3 Covering maps

Given an edge-indexed graph Γ, to take an elementary subdivision of Γ means to choose
a subset of the edges of Γ, add a new vertex to the interior of each chosen edge, and
assign index 1 to each end incident to a new vertex; each new vertex has valence 2 and
total index 2. Thus, under elementary subdivision, an edge can be subdivided into at
most two edges. A general subdivision of Γ is the result of a finite sequence of elementary
subdivisions; now an edge can be subdivided into an arbitrary finite number of edges.

Let Γ1,Γ2 be edge-indexed graphs. A continuous, surjective map µ : Γ1 → Γ2 is called
a covering map if there exists a subdivision Γ′1 of Γ1 such that the following holds:

Cellularity µ is a cellular map from Γ′1 to Γ2, taking Verts(Γ′1) to Verts(Γ2), and taking
each edge e of Γ′1 homeomorphically to an edge µ(e) of Γ2. There is therefore an
induced map µ : Ends(Γ′1)→ Ends(Γ2).

Subdivision normalization Given an edge e of Γ1 and a vertex v of Γ′1 in the interior
of e, if e′, e′′ are the edges of Γ′1 incident to v then µ(e′) = µ(e′′).

Even covering Each end η ∈ Ends(Γ2) is evenly covered by µ, which means: letting
w ∈ Verts(Γ2) be the vertex to which η is attached, for each v ∈ Verts(Γ′1) such
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that v ∈ µ−1(w), we have

I(η) =
∑

η′∈Ends(v)∩µ−1(η)

I(η′)

Here are a few more properties which follow immediately from the definitions:

Total index preserved For each vertex v of Γ′1, we have TI(v) = TI(µ(w)).

Folding of subdivision vertices Let v be a subdivision vertex of Γ′1, and so TI(v) = 2
and TI(µ(v)) = 2. By subdivision normalization it follows that µ(v) has valence 1,
with one incident end of index 2.

This last property, which derives from subdivision normalization, is needed to avoid
unnecessary subdivision. As we shall see below in Lemma 11 it follows in generic cases
that the subdivision Γ′1 is, in fact, just an elementary subdivision of Γ1.

Here are some examples.
If there is a pair of vertices v, w ∈ Verts(Γ) and a pair of edges e 6= e′ each of whose

two ends are attached respectively to v, w, then there is a covering map which identifies
e to e′ homeomorphically, and leaves the rest of Γ unchanged. We’ll refer to this covering
map as collapsing a bigon:

•
a b

c d

•
collapse bigon−−−−−−−−−−→ • a+c b+d •

This covering map is defined even when v = w.
If e is a loop of Γ then there is a covering map which first subdivides e and then

collapses the resulting bigon, leaving the rest of Γ unchanged. This covering map is
called folding a loop:

•
a

b

subdivide−−−−−−−→ •
1 a

1 b

•
collapse bigon−−−−−−−−−−→ • 2 a+b •

If Γ is a finite edge-indexed graph without loops or bigons, and if any two vertices of Γ
have distinct total indices, it follows that any covering map µ : Γ→ Γ′ is an isomorphism,
because µ must be one-to-one on vertices due to the fact that µ preserves total indices,
and the map on vertices determines the map on edges due to the fact that Γ has no loops
or bigons.

Covering maps of edge-indexed graphs arise naturally from the covering theory of
graphs of groups [Bas93]. Suppose that Γ,Γ′ are graphs of groups with finite index edge-
to-vertex injections, and let Γ,Γ′ be equipped with their natural edge indexings. Suppose
that we have a covering map Φ: Γ → Γ′ in the graph of groups sense, as defined in
[Bas93]. Then Φ is also a covering map in the edge-indexed graphs sense; this follows
from Proposition 2.7 of [Bas93].

If T is an arbitrary locally finite tree and G is an arbitrary subgroup of IsomT , then
the quotient map p : T → T/G can be regarded as a covering map with respect to a
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natural edge-indexing I on T/G, where the edge-indexing on T assigns index 1 to each
end. To describe I, first subdivide any edge of T which is inverted by some element of G,
so that p is cellular. Given any vertex w of T/G and end η ∈ Ends(w), choose v ∈ p−1(w)
and η̃ ∈ p−1(η) ∩ Ends(v), and define I(η) = [Gv : Gη̃], where G• denotes a stabilizer
subgroup of G; note that I(η) is well-defined, independent of v or η̃. Note also that I(η)
is equal to the cardinality of the Gv orbit of Gη̃, which is useful in proving that η is evenly
covered by p.

Here is a useful construction of covering maps:

Lemma 10. Let T be a locally finite tree, and consider subgroups G < G′ < Isom T and

the corresponding covering maps T
p′−→ Γ′ = T/G′ and T

p−→ Γ = T/G. The induced map
map Γ′

µ−→ Γ is a covering map.

Proof. We may assume, by subdividing T if necessary, that G and G′ act without edge
inversions, and so the maps p, p′ are cellular. Let G•,G′• denote stabilizer subgroups of
G,G′ respectively. Consider a vertex v of T , the image vertices w = p(v), w′ = p′(v), and
η ∈ Ends(Γ, w); we must show that η is evenly covered by µ. Let E = p−1(η) ⊂ Ends(v),
choose η̃ ∈ E, and so the left hand side of the even covering equation for η is [Gv : Gη̃] =
|E|. Let {η1, . . . , ηk} = µ−1(η)∩Ends(w), and let Ei = p′−1(ηi)∩Ends(v) = p′−1(ηi)∩E;
choosing η̃i ∈ Ei, the right hand side of the even covering equation for η equals the sum
of [G′v : G′η̃i ] = |Ei|. But E is the disjoint union of E1, . . . , Ek. ♦

A finite edge-indexed graph Γ is said to be an orbifold if each vertex has total index 2;
it follows that topologically Γ is either a circle or an arc, and each vertex is either valence 2
with two ends of index 1, or valence 1 with one end of index 2. For any covering map
Γ → Γ′ of edge-indexed graphs, Γ is an orbifold if and only if Γ′ is an orbifold, because
of the fact that total index is preserved. Covering maps between orbifolds can involve
complicated subdivisions. For example, if Γ is a circle orbifold and Γ′ is an arc orbifold
with one edge, first do any subdivision of Γ resulting in an even number of edges, and
then fold Γ over Γ′ in zig-zag fashion. Similarly, if Γ is an arc orbifold and Γ′ is an arc
orbifold with one edge, first do any subdivision of Γ whatsoever, and then fold the result
in zig-zag fashion over Γ′.

The following lemma demonstrates how subdivision normalization enforces the sim-
plest kind of subdivision for all but the most special covering maps:

Lemma 11 (Subdivision lemma). If p : Γ1 → Γ2 is a covering map, and if Γ2 is not
an arc orbifold with one edge, then the subdivision needed to define p is an elementary
subdivision; in other words, each edge of Γ1 either maps homeomorphically to an edge of
Γ2 or is folded around an edge of Γ2.

Proof. Suppose that some edge e of Γ1 is subdivided by inserting at least two distinct
vertices in int(e), and so Γ′1 has an edge e′ contained in the interior of e, with endpoints
a′ 6= b′ ∈ int(e). Consider the edge p(e′) of Γ2, whose ends are located at vertices p(a′),
p(b′). From the property “folding of subdivision vertices” it follows that p(a′) and p(b′)
both have valence 1 and total index 2; this implies furthermore that p(e′) is the unique
edge of Γ2. ♦

The next lemma satisfies one’s natural intuition for covering maps:
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Lemma 12. A composition of covering maps is a covering map.

Proof. Consider a composition of covering maps Γ1
µ1−→ Γ2

µ2−→ Γ3. Let Γ′1 be the
subdivision needed for µ1, and let Γ′2 be the subdivision needed for µ2. Pulling back
the subdivision points of Γ′2 defines a further subdivision Γ′′1 of Γ′1. The map µ2 ◦ µ1

from Γ′′1 to Γ3 now satisfies cellularity and subdivision normalization, and even covering
is easily checked. ♦

4.4 The universal covering tree

A universal covering map of an edge-indexed graph Γ is a covering map π : T → Γ such
that T is a tree, regarded as an edge-indexed graph by assigning index 1 to each end of
each edge of T . Every edge-indexed graph Γ has a universal covering map. This is proved
in Remark 1.18 of [Bas93]; here is a construction.

Let Nv denote the regular neighborhood of v in Γ, defined as the union of the 1-cells
of the barycentric subdivision of Γ that touch v. The graph Nv has the vertex v and
in addition one valence 1 vertex denoted mη corresponding to each end η ∈ Ends(v).
Given e ∈ Edges(Γ) and η ∈ Ends(e) denote η−1 ∈ Ends(e) to be the end opposite from
η, and note that mη = mη−1 . For each v ∈ Verts(Γ) construct a local universal cover
pv : Tv → Nv, where Tv is the star on a set of cardinality TI(v), where pv is a cellular map
taking the star point to v, and where

∣∣p−1
v (mη)

∣∣ = I(η) for each η ∈ Ends(v). Construct
T and the covering map p : T → Γ as the increasing union of subtrees T0 ⊂ T1 ⊂ T2 ⊂ . . .
and maps pi : Ti → Γ, with pi

∣∣ Tj = pj for i > j, as follows. Choose a base vertex
v ∈ Verts(Γ), let T0 be a disjoint copy of Tv, and let p0 be a disjoint copy of pv. Assuming
Ti, pi have been constructed, consider an endpoint m̃ of Ti, which means a valence 1 vertex
of Ti such that m = pi(m̃) is not a vertex of Γ. Let ṽ be the vertex of Ti closest to m̃,
let v = pi(ṽ) ∈ Verts(Γ), and note that m = mη for some η ∈ Ends(v). The opposite
end η−1 of η is located at some vertex w ∈ Verts(Γ). Choose a disjoint copy of Tw, and
choose a point m′ ∈ p−1

w (m), a valence 1 vertex of Tw. Now glue the disjoint copy of Tw
to Ti by identifying m̃ to m′. Doing these gluings disjointly for each valence 1 vertex m̃
of Ti defines the tree Ti+1, and extending pi by disjoint copies of the maps pw defines the
map pi+1. This finishes the definition of the universal covering tree T .

Note, following Remark 1.18 of [Bas93], that the Bass-Serre tree of a graph of groups
may be identified with the universal covering tree of the underlying edge-indexed graph
(this holds even when edge-to-vertex injections are not of finite index, by stretching the
concept of an edge-indexing to accomodate arbitrary cardinal number values for indices).

Starting from a finite valence tree T and an action of a group G on T , take the
graph of groups T/G, then pass to the associated edge-indexed graph, and then take the
universal covering tree; the result is naturally isomorphic to the subdivision of T obtained
by elementarily subdividing each edge which is inverted by some element of G. Note in
particular that if T is not a line then the full metric isometry group equals IsomT , the
group of cellular isometries, and so in this case if T ′ is the tree obtained by elementarily
subdividing each edge of T that is inverted by some isometry of T then Isom T = Isom T ′

and so T ′ is the universal covering tree of T ′/ Isom T ′.

We collect here without proof some simple facts, the first of which justifies the termi-
nology of a “universal covering map”:
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Lemma 13. An edge-indexed graph Γ with universal covering p : T → Γ satisfies the
following properties:

(1) If f : Γ′ → Γ is a covering map and if p′ : T ′ → Γ′ is a universal covering map then
there is an isomorphism between T and a subdivision of T ′ so that f ◦ p′ = p.

(2) If p′′ : Γ→ Γ′′ is a covering map then the composition T
p−→ Γ

p′′−→ Γ′′ is a universal
covering map for Γ′′.

♦

It follows from (1) that a cellular universal covering map p : T → Γ is uniquely deter-
mined by Γ up to isomorphism: if p′ : T ′ → Γ is another cellular universal covering map
then there is an isomorphism φ : T → T ′ such that p′ ◦ φ = p. The point here is that
by definition a universal covering map p : T → Γ need not be cellular; there may be a
nontrivial subdivision in the definition of p.

4.5 The geometric trichotomy

This is a simple trichotomy satisfied by the universal covering tree T of a finite, edge-
indexed graph Γ:

T is bounded; or

T is line-like, meaning that there is an embedded bi-infinite line L in T and a constant
A ≥ 0 such that each point of T is a distance ≤ A from L; or

T is bushy, meaning that there is a constant A ≥ 0 such that each point of T is a
distance ≤ A from a vertex v with the property that T − v has at least three
unbounded components.

When T is line-like then T has two ends; whereas when T is bushy then its space of ends
is homeomorphic to a Cantor set. The proof of this trichotomy is a standard exercise;
see the comment before Lemma 14 below for an indication of a simple proof. See §5 of
[BK90] for the statement and proof of the trichotomy in the case when Γ is unimodular;
when Γ is not unimodular then it is easily seen that T is bushy. As noted in [BK90],
in some sense this geometric trichotomy is yet another manifestation of the spherical–
euclidean–hyperbolic trichotomy.

Note that the geometric trichotomy of the universal covering tree is invariant un-
der covering maps between finite edge-indexed graphs, because if p : Γ1 → Γ2 is such a
covering map then the universal covering trees of Γ1,Γ2 are homeomorphic.

The geometric trichotomy can be detected algorithmically from a finite edge-indexed
graph Γ as follows.

A thorn of Γ is a vertex v with total index 1; the valence must also equal 1. Equiva-
lently, any vertex in the universal covering tree T lying over v has valence 1. To trim a
thorn means to remove it and the incident edge, producing a smaller edge-indexed graph;
the effect on the universal covering tree T is to remove the D(Γ) orbit lying over v and
the incident edges. Note that trimming does not affect the geometric trichotomy of the
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universal covering tree. An edge-indexed graph Γ with no thorns is said to be thornless,
and this happens if and only if the universal covering tree T has no valence 1 vertices,
that is, if T is also thornless.

Every finite edge-indexed graph Γ can be trimmed inductively until one reaches a
thornless edge-indexed graph, which can be regarded as a subgraph Γ′ ⊂ Γ called a
thornless core of Γ.

The following simple fact is left to the reader; its proof may be used to provide a
simple proof of the geometric trichotomy:

Lemma 14. Let Γ be a finite edge-indexed graph with universal covering p : T → Γ. Let
Γ′ be a thornless core and let T ′ = p−1(Γ′). Then T ′ is a D(Γ)-invariant subtree of T ,
and each point of T is a uniformly bounded distance from some point of T ′. Moreover:

(1) T is bounded ⇐⇒ T ′ is a single point ⇐⇒ Γ′ is a single point.

(2) T is line-like ⇐⇒ T ′ is a line ⇐⇒ Γ′ is an orbifold.

(3) T is bushy ⇐⇒ T ′ has a vertex of valence ≥ 3 ⇐⇒ Γ′ is neither a single point
nor an orbifold.

In case (1) the thornless core may not be unique. In cases (2) and (3) the thornless core
Γ′ is unique. ♦

Because of this lemma we may extend the terminology “bushy” to apply to a finite
edge-indexed graph Γ: we say that Γ is bushy if and only if its universal covering tree is
bushy, which happens if and only if Γ has a unique thornless core Γ′, and Γ′ is neither
a point nor an orbifold. Many of the unpleasant properties we have begun to encounter
when the universal covering tree is a line may be simply avoided by assuming bushiness.

It should be clear that a “generic” finite edge-indexed graph is bushy, because gener-
ically the thornless core is neither a point nor an orbifold.

4.6 Deck transformation groups

Consider a finite, bushy edge-indexed graph Γ with universal covering p : T → Γ. We
assume that Γ has a geodesic metric which lifts to a geodesic metric on T so that each
edge of T has length 1. Recall that Isom T denotes the topological group of cellular
isometries of the tree T . The deck transformation group of p : T → Γ is the closed
subgroup of IsomT defined by

D(Γ) = {f ∈ Isom T
∣∣ p ◦ f = p}

= {f ∈ Homeo(T )
∣∣ p ◦ f = p}

The equation of sets on the right hand side is a consequence of the Subdivision Lemma 11,
and it is the key place where we need bushiness—the equation can fail when Γ is an orbifold
and the covering map p : T → Γ needs a nonelementary subdivision on T . This equation
implies that the topological quotient T/D(Γ) is naturally identified with Γ, that is, there is

a natural homeomorphism T/D(Γ)
φ≈ Γ so that the composition T → T/D(Γ)

φ≈ Γ equals
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p. Moreover, the homeomorphism φ induces an edge-indexed isomorphism between the
natural edge-indexed structure on T/D(Γ) and Γ.

To summarize: when Γ is finite and bushy, the edge-indexed graphs T/D(Γ) and Γ are
naturally isomorphic. We will use this identification without comment in what follows.

From finiteness of Γ it follows that D(Γ) is cocompact in Isom T .

Lemma 15. Given a covering map of finite, bushy edge indexed graphs µ : Γ1 → Γ2, with
universal coverings p : T → Γ1, µ ◦ p : T → Γ2, we have D(Γ1) ⊂ D(Γ2), with equality if
and only if µ is an isomorphism of edge-indexed graphs.

Given a finite, bushy edge-indexed graph Γ with universal covering p : T → Γ, and
given a subgroup G < Isom T with D(Γ) < G, the quotient map T → T/G factors as

T
p−→ Γ

p′−→ T/G for some covering map p′.

Proof. The second part is simply a special case of Lemma 10. We leave the proof of the
first part to the reader, except to verify that if µ : Γ1 → Γ2 is a nonisomorphic covering
map then D(Γ1) 6= D(Γ2). To see why this is true, let Γ′1 be the subdivision of Γ1, and
note that there must two cells c1 6= c2 of Γ′1, either both edges or both vertices, such that
µ(c1) = µ(c2). Choosing cells c̃1, c̃2 of T lying over c1, c2 respectively, D(Γ2) − D(Γ1)
contains an isometry of T taking c̃1 to c̃2. ♦

Corollary 16 (Existence of a minimal subcover). Let Γ be a finite, bushy edge-indexed
graph, and let p : T → Γ be the universal covering. There exists a covering map ν : Γ →
T/ Isom T which is a minimal subcover for Γ, meaning that for any covering map µ : Γ→
Γ′, there exists a covering map µ′ : Γ′ → T/ Isom T such that ν = µ′ ◦ µ.

It follows easily that D(Γ) = Isom T if and only if Γ is its own minimal subcover.

Proof. Consider the covering map q : T → T/ Isom T . Apply Lemma 15 to obtain a
covering map factorization T

p−→ Γ ν−→ T/ Isom T of q. Consider any covering map µ : Γ→
Γ′, and so the composition µ ◦ p : T → Γ′ is a universal covering map. We have D(p) <
D(µ ◦ p) < Isom T , which implies in turn that ν : Γ→ T/ Isom T factors as a product of

covering maps Γ
µ−→ Γ′

µ′−→ T/ Isom T . ♦

To summarize this discussion, a finite, bushy edge-indexed graph Γ can be considered
as an encoding of a certain locally compact group, namely the deck transformation group
of the universal covering of Γ. When Γ is its own minimal subcover, then Γ encodes
the entire isometry group of its universal cover. Thus, via the universal covering map
we obtain a bijection between the isometry types of cocompact, bushy, bounded valence
trees and the isomorphism types of finite, bushy edge-indexed graphs which are their own
minimal subcovers.

4.7 Unimodularity

Given an edge-indexed graph Γ there is a canonical cocycle ξ ∈ C1(Γ;Q+), where Q+ de-
notes the group of positive rational numbers under multiplication: for each oriented edge
e of Γ with positive end η+(e) and negative end η−(e), define ξ(e) = I(η+(e))/I(η−(e)).
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Theorem 17 ([BK90]). Let T be a bounded valence, cocompact tree. The following are
equivalent:

• Isom T has a discrete, cocompact subgroup.

• Isom T is unimodular (that is, each left invariant Haar measure is also right invari-
ant).

• The cohomology class of the canonical cocycle ξ of T/ Isom T is trivial.

♦

Because of this theorem, a finite edge-indexed graph Γ is called unimodular if the
canonical cocycle ξ is cohomologically trivial. For example if Γ is a tree then it is uni-
modular.

5 Pumping up the deck transformation group

Throughout this section and until further notice, all edge-indexed graphs are finite and
bushy, allowing us to apply the results of §4.6.

Let Γ be a thornless edge-indexed graph with universal cover T . We describe several
methods for “pumping up” the group D(Γ), embedding it nonsurjectively in a larger deck
transformation group. More precisely, pumping up D(Γ) means constructing a continuous,
proper, cocompact, nonsurjective monomorphism Ψ: D(Γ)→ D(Γ′) where Γ′ is another
thornless edge-indexed graph. We describe several explicit pumping up operations. One
such operation has already been discussed, namely “passing to a proper subcover”, which
detects when the embedding D(Γ) < Isom(T ) fails to be surjective, and which allows
one to construct another edge-indexed graph whose deck transformation group is all of
Isom(T ). Another pumping up operation, called “index 1 collapse”, may apply even when
D(Γ) = Isom(T ), and it is particularly useful for demonstrating that T is not maximally
symmetric. In addition we combine these two operations into some composite pumping
up operations.

Given an edge-indexed graph Γ which is its own minimal subcover, so that D(Γ) =
Isom(T ), it follows that if Γ can be pumped up then T fails to be maximally symmet-
ric. Later on we will prove the converse, giving the desired finitistic characterization of
maximally symmetric trees.

5.1 Pumping up operations

Proper subcovers Passing to a proper subcover has already been discussed:

Lemma 18 (Pumping up with proper subcovers). For any proper covering map
µ : Γ → Γ′, the inclusion map D(Γ) ⊂ D(Γ′) (as subgroups of Isom T = Isom T ′) is
continuous, proper, cocompact, and nonsurjective, and so D(Γ) pumps up to D(Γ′). ♦
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Index 1 collapse An index 1 edge of Γ is an edge e having an end η of index 1; let ζ be
the opposite end of e. Suppose in addition that e is not a loop (index 1 collapse on e is not
defined when e is a loop). The ends η, ζ are located at distinct vertices v 6= w. Letting
n = I(ζ), we define the index 1–n collapse on e, also called an index 1 collapse when
the value of n is unimportant, to be the edge-indexed graph Γ/e defined as follows. The
underlying graph of Γ/e is obtained from Γ by collapsing the edge e to a single vertex z.
The quotient map q : Γ→ Γ/e induces a bijection Ends(Γ)−{η, ζ} ↔ Ends(Γ/e) denoted
ε̃↔ ε. Define the index of each ε ∈ Ends(Γ/e) as follows:

I(ε) =

{
I(ε̃) if ε̃ 6∈ Ends(v)
I(ε̃) · I(ζ) = I(ε̃) · n if ε̃ ∈ Ends(v)

For example:

aPPPPPPPPPPPPP

b{{{{{{{{

anPPPPPPPPPPPPP

b{{{{{{{{

• 1 n • index 1–n collapse // •
c

nnnnnnnnnnnnn

d

DDDDDDDD

cn
nnnnnnnnnnnnn

d

DDDDDDDD

Given an index 1–n collapse q : Γ → Γ/e and universal coverings p : T → Γ and
p′ : T ′ → Γ/e, the quotient map q lifts to a quotient map q̃ : T → T ′ that collapses
each connected component of p−1(e) to a point, and q̃ is equivariant with respect to a
homomorphism Q : D(Γ) → D(Γ/e). That is, for all φ ∈ D(Γ) we have a commutative
diagram

T
q̃ //

p

��

φ

��
T ′

p′

��

Q(φ)

��

Γ
q // Γ/e

We call Q the holonomy homomorphism of the map q, and we note that is a continuous,
proper, cocompact monomorphism from D(Γ) to D(Γ/e).

Notice that q̃ is not an isometry. On the other hand, q̃ is a quasi-isometry, because
q̃ is one-to-one except on the inverse image of each vertex z̃ of T ′ lying over z = q(e) ∈
Verts(Γ/e), and the diameter of q̃−1(z̃) is at most 2.

Lemma 19 (Pumping up with index 1–n collapse). Let Γ be a thornless edge-indexed
graph, and let q : Γ → Γ/e be an index 1–n collapse with p, p′, q̃, and Q as above. If
n ≥ 2 then Q is not surjective and so Q pumps up D(Γ) to D(Γ/e). On the other hand,
if n = 1 then Q is an isomorphism.

Proof. Let v, w be the endpoints of e incident to the ends η, ζ of index 1, n respectively.
Let w̃ ∈ T be a lift of w. Let e1, . . . , en ⊂ T be the incident lifts of e, with ends ζ1, . . . , ζn
lifting ζ and incident to w̃, and ends η1, . . . , ηn lifting η and incident to vertices ṽ1, . . . , ṽn
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lifting v, respectively. Since Γ is thornless and I(η) = 1 it follows that there is an end
ω ∈ Ends(v)− {η}. Let I(ω) = m. For each i = 1, . . . , n, let Ωi = {ωij

∣∣ j = 1, . . . , m},
be the lifts of ω located at ṽi, and let Ω = Ω1 ∪ · · · ∪ Ωn. The subgroup Stab Ωi of D(Γ)
stabilizing Ωi clearly acts as the symmetric group Sm on the set Ωi. The subgroup Stab Ω
acts on Ω preserving the decomposition Ω = Ω1

∐
· · ·
∐

Ωn, and so Stab Ω acts on Ω as
the semidirect product Sm × · · · × Sm︸ ︷︷ ︸

n times

o Sn

Now consider the vertex z = q(e) ∈ Verts(Γ/e) and its lift z̃ = q̃(w̃) ∈ Verts(T ′).
Note that the end q(ω) ∈ Ends(z) has index mn. Also, q̃(ωij) = ω′ij ∈ Ends(z̃), and
letting Ω′i = {ω′ij

∣∣ j = 1, . . . , m} and Ω′ = Ω′1 ∪ · · · ∪ Ω′n ⊂ Ends(z̃), it follows that
Stab Ω′ ⊂ D(Γ/e) acts on Ω′ as the symmetric group Smn.

On the other hand, clearly Q(Stab Ω) ⊂ Stab Ω′, and the image of Q(Stab Ω) is the
subgroup of Stab Ω′ that preserves the decomposition Ω′ = Ω′1

∐
· · ·
∐

Ω′n. If n ≥ 2 it
follows that Q is not surjective, whereas when n = 1 it follows that Q is surjective. ♦

More generally, given a finite sequence of index 1 collapses Γ = Γ1 → · · · → Γn, the
resulting composition has the effect of collapsing each component of some forest F ⊂ Γ
of index 1 edges; we call this an index 1 forest collapse on F , denoted Γ

qF−→ Γ/F , where
Γ/F ≈ Γn. Note that qF pumps up the deck transformation group if and only if F
contains at least one edge of index 1–n with n ≥ 2. For every finite edge-indexed graph
Γ there exists a maximal index 1 forest collapse Γ

qF−→ Γ′, resulting in an edge-indexed
graph Γ′ which has no index 1 collapse; equivalently, each index 1 edge of Γ′ is a loop.
Note that it is not possible to collapse an arbitrary forest of index 1 edges; for example,
if a vertex v has two ends η, η′ each of index 1, lying in edges e, e′ respectively, and if the
opposite ends of e, e′ each have index ≥ 2, then at most one of e, e′ is collapsed in any
index 1 forest collapse. On the other hand, an arbitrary forest of index 1–1 edges can be
collapsed.

Collapse and subcover Next we define a composite operation called collapse and
subcover. Starting from an edge indexed graph Γ, first do a maximal index 1 forest
collapse, with the effect that all remaining index 1 edges are loops; then pass to the
minimal subcover, which in particular has the effect of folding all loops. The resulting
graph Γ′ has no index 1 edges, and of course Γ′ is its own minimal subcover. A collapse
and subcover pumps up the deck transformation group in either of the following two
situations: an index 1–n edge is collapsed for some n ≥ 2; or the covering map is proper.
A collapse and subcover fails to pump up the deck transformation group, thereby inducing
an isomorphism of deck transformation groups, in the remaining case: all index 1 edges
are of type 1–1, they form a forest, and collapse of this forest produces an edge-indexed
graph which is its own minimal subcover.
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For example, consider the edge-indexed graph

•

1

3

������� 1

5@@@@@@@

•
17
•

One can do an index 1 collapse on any one or two of the edges, but not on all three. An
index 1 collapse on any two of these edges results in the edge-indexed graph

•
1

105

and folding the loop results in the graph

• 2 106 •

which is its own minimal subcover.

Blowup and subcover Because an index 1–1 forest collapse does not change the deck
transformation group, it is possible to start with an edge-indexed graph which is its own
minimal subcover, and then invert some index 1–1 forest collapse, resulting in an edge-
indexed graph which may not be its own minimal subcover. We must therefore consider
a composite pumping up operation called “blowup and subcover”.

Consider a thornless edge-indexed graph Γ. A blowup of Γ consists of a thornless edge-
indexed graph Γ′ which has a forest F of type 1–1 edges, and a collapse of this forest
yielding Γ, denoted Γ

qF←−− Γ′; formally qF has the effect of identifying the collapsed
graph Γ′/F isomorphically with Γ. We also require that for each vertex v of the blown
up graph Γ′, the valence and total index of v are not both equal to 2; this, together with
thornlessness of Γ′, has the important implication that Γ has only finitely many blowups
up to isomorphism.

A blowup and subcover of Γ, denoted Γ
qF←−− Γ′

µ−→ Γ′′, consists of a blowup Γ
qF←−− Γ′

followed by a minimal subcover Γ′
µ−→ Γ′′; the resulting Γ′′ is its own minimal subcover.

A blowup and proper subcover pumps up the deck transformation group, because the
blowup qF induces an isomorphism D(Γ) ≈ D(Γ′), and the proper subcover µ induces
a nonsurjective monomorphism D(Γ′) → D(Γ′′). There are only finitely many ways to
blowup and subcover Γ, up to isomorphism.

For example, consider the edge-indexed graph

• 4 5 • 3 6 •

Note that this is its own minimal subcover, and so its deck transformation group equals
the isometry group of its universal cover T ; however, T turns out not to be maximally
symmetric, because there is a blowup and proper subcover as follows. Blowing up the
middle vertex gives

• 4 5 • 1 1 • 3 6 •
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Note that the total indices are 4, 6, 4, 6 from left to right. Folding this graph up like a
tri-fold wallet,

• •4

5oooooooooooooo

•
1 1

•
3

6OOOOOOOOOOOOOO

we obtain a covering map to the edge-indexed graph • 6 4 • .
A similar blowup and subcover may be carried out on any edge-indexed graph of the

form
• a+1 b • a b+1 •

5.2 Pumping up algorithm

Is it possible to pump up D(Γ) infinitely often? At first it may seem that one can
indefinitely repeat the blowup and proper subcover operation. However, we shall prove
that this is impossible (a fact which depends on bushiness), leading to an algorithm which
pumps up Γ as much as possible with just a few pumps.

Recall that we continue to assume all edge-indexed graphs are finite and bushy.

Lemma 20. Let Γ be an edge-indexed graph without index 1 edges which is its own mini-
mal subcover. There is an algorithm which constructs a blowup and subcover Γ

qF←−− Γ′
µ−→

Γ′′ such that Γ′′ has no index 1 edge and no blowup and proper subcover.

The algorithm of Lemma 20 proceeds, in outline, as follows. If Γ has a blowup and
proper subcover, then we show it has one Γ = Γ0 ← ∆0 → Γ1 such that Γ1 has no
index 1 edges and is its own minimal subcover. Repeating this we obtain a sequence of
blowup and proper subcovers Γn−1 ← ∆n → Γn so that each Γn has no index 1 edges
and is its own minimal subcover. This process stops at some ΓN if and only if ΓN has no
blowup and proper subcover. To show that this eventually happens, we will prove that
each Γn is connected to the original Γ by a single blowup and proper subcover operation
Γ Fn←−− Γ′n → Γn, and the number of edges in the collapsing tree Fn is increasing strictly
monotonically with n. The crucial fact which makes the algorithm stop is that at no
stage does Γ′n ever have a vertex of valence 2 and total index 2, which puts an upper
bound on the number of edges in Fn.

Lemma 20 guarantees that the following algorithm stops:

Corollary 21 (Pumping up algorithm). Given Γ a finite, bushy, thornless edge-indexed
graph, the following algorithm pumps up D(Γ) to D(Γ′) where Γ′ is a finite, bushy edge-
indexed graph without index 1 edges and with no blowup and proper subcover:

Step 1 Do a collapse and subcover Γ → Γ1, and so Γ1 has no index 1 edges and is its
own minimal subcover.

Step 2 If Γ1 has no blowup and proper subcover, stop.
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Step 3 Otherwise, carry out the algorithm of Lemma 20 to find a blowup and proper
subcover Γ1 ← Γ2 → Γ3 such that Γ3 has no index 1 edge and no blowup and proper
subcover.

♦

Proof of Lemma 20. We break the algorithm into two subroutines.

Subroutine 1 Given an edge-indexed graph Γ which is its own minimal subcover, and
given any blowup and proper subcover Γ

qF←−− Γ1
µ−→ Γ2, produce a blowup and

proper subcover Γ
qF ′←−− Γ′ → Γ4 so that Γ4 has no index 1 edges, and so that

F ′ 6= ∅.

Refer to the commutative diagram below. The fact that F ′ 6= ∅ follows because if not
then Γ ≈ Γ′ contradicting that Γ has no proper subcovers.

We may assume that Γ2 does have at least one index 1 edge; note that each of them
is of type 1–1, because µ−1(e) for a type 1–n edge e of Γ2 is a union of type 1–n edges of
Γ1, but each index 1 edge of Γ1 has type 1–1. Let Γ2

qG−→ Γ3 collapse a maximal forest G
of index 1–1 edges. Let Γ3

ν−→ Γ4 be a minimal subcover, and so Γ4 has no index 1 edge.
Consider G̃ = µ−1(G), a subgraph of F in Γ1, and so G̃ is itself a type 1–1 forest; in fact,
µ induces an isomorphism between each component of G̃ and a component of G. The type
1–1 forest collapse Γ1

qF−→ Γ can be factored as a composition of type 1–1 forest collapses
Γ1

qG̃−→ Γ′
qF ′−−→ Γ where F ′ = F/G̃; we remark that no vertex of F has valence and total

index in Γ1 both equal to 2, and so the same is true of vertices of F ′ in Γ′. The covering
map µ : Γ1 → Γ2 induces a covering map µ′ : Γ′ → Γ3 so that µ′ ◦ qG̃ = qG ◦ µ. Note
that properness of µ implies properness of µ′: if some component of G has more than one
component in its preimage under µ then this produces a point of qG(G) which has more
than one component in its preimage under µ′; otherwise, some cell c of Γ which is disjoint
from G has more than one preimage under µ, and it follows that qG(c) has more than one

preimage under µ′. We thus obtain a blowup and proper subcover Γ
qF ′←−− Γ′

ν◦µ′−−−→ Γ4 so
that Γ4 has no index 1 edges.

Γ Γ1qF
oo

qG̃
//

µ

��

Γ′

µ′

��

qF ′

ww

Γ2 qG
// Γ3

ν

��
Γ4

This completes the description of Subroutine 1.

Subroutine 2 Given successive blowup and subcover operations Γ
qF←−− Γ1

µ−→ Γ2 and
Γ2

qG←−− Γ3
ν−→ Γ4 so that neither Γ2 nor Γ4 has any index 1 edge, produce another

blowup and subcover Γ
qF ′←−− Γ′ → Γ4. Moreover, |F ′| ≥ |F |+ |G|.
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First we consider the case where G = {e}, in which case we do a pushout as follows:

Γ Γ1
qFoo

µ

��

Γ′

ν′

��

q′oo

Γ2 Γ3qe
oo

ν

��
Γ4

As a subset of Γ1 × Γ3, Γ′ is the set of ordered pairs (x, y) such that µ(x) = qe(y),
and the maps q′, ν′ are projections. We denote the vertices and edges of Γ′ as “tensor
products”. Each vertex of Γ′ is of the form V ⊗ W = (V, W ) where V ∈ Verts(Γ1),
W ∈ Verts(Γ3), and µ(V ) = qe(W ). There are two types of edges in Γ′. First, letting
Z = qe(e) ∈ Verts(Γ2), for each vertex Z̃ ∈ Verts(Γ1) such that µ(Z̃) = Z there is an edge
Z̃⊗ e = Z̃× e ∈ Edges(Γ′). Second, for each edge D ∈ Edges(Γ1) and E 6= e ∈ Edges(Γ3)
such that µ(D) = qe(E), there is an edge D⊗E = {(x, y) ∈ D×E

∣∣ µ(x) = qe(y)}. Edge
indexing on Γ′ is defined as follows: each edge of the form Z̃⊗e has both ends of index 1;
and the indexing of every other edge D⊗E is obtained by pullback under the projection
D ⊗ E → D ∈ Edges(Γ2).

We first check that ν′ : Γ′ → Γ3 is a covering map, and the only thing to verify is that
each end η ∈ Ends(Γ3) is evenly covered. Noting that ν′−1(e) is the disjoint union of the
edges Z̃ ⊗ e, it follows that each end of e is evenly covered. If η is not an end of e, let
η ∈ Ends(W ) for W ∈ Verts(Γ3), and consider a vertex V ⊗W ∈ ν′−1(W ). Note that
I(η) = I(qe(η)). Note also that q′ induces an index preserving bijection between the set
ν′−1(η)∩Ends(V ⊗W ) and the set µ−1(qe(η))∩Ends(V ). Since qe(η) is evenly covered,
it follows that η is evenly covered.

Next we check that q′ : Γ′ → Γ1 is a blowup of Γ1. Setting F ′ to be the set of all
edges of Γ′ of the form Z̃ ⊗ e, note that these edges are pairwise disjoint and so form an
index 1–1 forest, and q′ is the map which collapses each edge Z̃ ⊗ e to the point Z̃. The
only important issue to resolve is whether Γ′ has a vertex of valence 2 and total index 2.
Suppose there is such a vertex V ⊗W . Since Γ

qF←−− Γ1 is a blowup of Γ it follows that Γ1

has no vertex of valence 2 and total index 2, which implies that one of the two edges of Γ′

incident to V ⊗W is an edge Z̃ ⊗ e of F ′, and so V = Z̃ and W is an endpoint of e. The
two ends of Γ′ incident to Z̃ ⊗W are mapped distinctly to Γ3, and since we’ve already
proved that ν′ is a covering map it follows that W has valence 2 and total index 2 in Γ3.
But qe : Γ3 → Γ2 is a blowup of Γ2, which implies that Γ3 has no vertices of valence 2
and total index 2, a contradiction.

Finally, we must check that the composition qF ◦ q′ : Γ′ → Γ is a blowup of Γ. Clearly
F ′′ = q′−1(F )∪F ′ is an index 1–1 forest in Γ′, and the composition qF ◦q′ is just collapsing
of F ′′. And we have already checked above that Γ′ has no vertex of valence 2 and total
index 2. Note also that |F ′′| =

∣∣q′−1(F )
∣∣+ |F ′| = |F |+ |F ′| ≥ |F |+ |G|.

We therefore have the required blowup and subcover Γ ← Γ′ → Γ4 when G is single
edge. More generally we can proceed inductively, doing successive pushouts, to obtain
the blowup and subcover for general G. This completes the description of Subroutine 2.
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To prove Lemma 20, consider an edge-indexed graph Γ without index 1 edges which
is its own minimal subcover. If Γ has no blowup and proper subcover, the algorithm
is finished. Otherwise, choose a blowup and proper subcover Γ

qF1←−− Γ′1
µ1−→ Γ1, and

immediately apply Subroutine 1 to obtain one for which Γ1 has no index 1 edges and
F1 6= ∅. Note that Γ1 is its own minimal subcover. Now proceed inductively as follows:
assume we have a sequence of blowup and proper subcover operations Γ

qFk←−− Γ′k
µk−→ Γk

for which Γk has no index 1 edges and is its own minimal subcover, and such that the
cardinalities |Fk| are strictly increasing. If Γk has no blowup and proper subcover then the
algorithm is finished. Otherwise, choose a blowup and proper subcover Γk

qGk←−−− ∆k+1
νk−→

Γk+1, and immediately apply Subroutine 1 to obtain one for which Γk+1 has no index 1
edges and Gk 6= ∅. Now apply Subroutine 2 to obtain a blowup and proper subcover

Γ
qFk+1←−−−− Γ′k+1

µk+1−−−→ Γk+1, and note that |Fk+1| ≥ |Fk|+|Gk| > |Fk|. As the cardinalities

of the blowup trees Fk are increasing, the blowup and subcovers Γ
qFk←−− Γ′k

µk−→ Γk are
all distinct. But Γ has only finitely many blowup and subcovers, and so the algorithm
must stop. ♦

6 Enumerating maximally symmetric trees

In this section we prove Theorem 2 and Corollary 3. For the proof we will use without
comment the fact that a bounded valence, bushy, cocompact tree is index 1 normalized if
and only if its quotient edge-indexed graph has no index 1 edges. We continue to assume
that all edge-indexed graphs are finite and bushy.

6.1 Graphs with no blowup and proper subcover

Besides applying Theorem 8, the heart of the proof is the following:

Proposition 22. Let Γ be an edge-indexed graph with no index 1 edge and no blowup
and proper subcover, and let p : T → Γ be the universal covering. Let Γ′ be an edge-
indexed graph with no index 1 edge, and let p : T ′ → Γ′ be the universal covering. If
Ψ: Isom T → Isom T ′ is a continuous, proper, cocompact monomorphism, then there
exists an isometry ψ : T → T ′ such that Ψ = adψ.

The techniques of proof are similar to those of Bass and Lubotzky [BL94], who study
situations under which a morphism between two actions of a group H on trees T, T ′

is actually an isometry between T and T ′. In the context of Proposition 22, if one
assumes in addition that Γ has all ends of index ≥ 3, and that the edge-indexed graph
T ′/ image(Ψ) has all ends of index > 1, then the conclusion follows from [BL94] Corollary
4.8(d). Proposition 22 makes no assumptions about how Ψ(IsomT ) acts on T ′, other
than the mild assumptions of continuity, properness, and cocompactness of Ψ. Even
more significant, new techniques are needed in order to handle index 2 ends of Γ.

Proof. Let p : T → Γ, p′ : T ′ → Γ′, Ψ: IsomT → Isom T ′ be as in the statement of the
proposition. We must produce an isometry ψ : T → T ′ such that Ψ = adψ, or in other
words ψ is Ψ-equivariant meaning that for any f ∈ Isom T we have ψ ◦ f = Ψ(f) ◦ ψ.
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Keeping in mind the results of Bass and Lubotzky [BL94] mentioned above, our main
difficulties are to understand index 2 ends of Γ.

Note that since Γ and Γ′ are their own minimal subcovers, we have D(Γ) = Isom T ,
D(Γ′) = Isom T ′.

We collect some facts about the tree T . Notation: the subgroups of IsomT stabilizing
a vertex v and an edge e are denoted Sv, Se respectively.

We may assume that Isom T (and similarly Isom T ′) acts without edge inversions, and
so for each vertex v and each incident edge e we have Se < Sv; if an edge is inverted by
some isometry, simply subdivide the edge at its midpoint.

For each vertex v ∈ Verts(T ) and each edge e of T with endpoint v and end η incident
to v, we have [Sv : Se] = I(p(η)). The group Sv acts on the edges incident to v, and it
follows that I(p(η)) equals the cardinality of the Sv-orbit of e.

An edge e of T with endpoints v, w is called an index 2 edge if Se has index 2 in at
least one of Sv or Sw, or equivalently if the image of e in Γ has an index 2 end.

Lemma 23. Given two edges e, e′ of T , the following are equivalent:

(a) One of Se, Se′ is a subgroup of the other.

(b) Se = Se′ .

(c) Letting e = e0 ∗ e1 ∗ · · · ∗ ek = e′ be the unique embedded edge path in T from e to
e′, and letting vi = ei−1 ∩ ei, for each i = 1, . . . , k the set {ei−1, ei} forms a single
orbit (of cardinality 2) for the action of Svi on set Edges(vi) of edges incident to
vi.

Proof. Obviously (b) implies (a).
To show that (c) implies (b) it suffices to observe that if e 6= e′ are both incident to a

vertex v and if {e, e′} forms an orbit of the action of Sv then Se = Se′ .
To prove that (a) implies (c), suppose that Se ⊂ Se′ and let e = e0 ∗· · ·∗ek = e′ be the

edge path as in (c). It follows that Se ⊂ Sei for i = 1, . . . , k. By induction on k we easily
reduce to the case k = 1: assuming that e, e′ are incident to v and Se ⊂ Se′ , we must show
that {e, e′} is an Sv orbit of the action of Sv on Edges(v). If this is not true, then there
exists an edge e′′ 6= e, e′ incident to v such that e′, e′′ are in the same Sv orbit (this uses
the fact that all orbits of the Sv action on Edges(v) have cardinality ≥ 2). Let Te′ , Te′′

be the closures of the components of T − v containing e′, e′′, respectively. Any element
of Sv taking e′ to e′′ restricts to an isomorphism f : Te′ → Te′′ . Let F : T → T be the
isomorphism whose restriction to T − (Te′ ∪ Te′′) is the identity, so that F

∣∣ Te′ = f and
F
∣∣ Te′′ = f−1. Then we have F ∈ Se − Se′ , contradicting that Se ⊂ Se′ , and therefore

showing that {e, e′} do form an Sv orbit. ♦

The condition Se = Se′ is obviously an equivalence relation on edges, called stabilizer
equivalence. Condition (c) in the lemma shows that there are three types of stabilizer
equivalence classes. First is a singleton, a class consisting of a single edge e; this occurs
when p(e) has no index 2 ends. Second is a doubleton, a pair of edges e, e′ sharing an
endpoint; this occurs when p(e) = p(e′) has exactly one end of index 2. Third is a line
in T , which occurs when the image of the line is an edge of Γ both of whose ends have
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index 2. Condition (a) shows that if e, e′ are inequivalent edges then neither of Se, Se′ is
contained in the other.

We shall now define the map ψ : T → T ′. To define ψ on Verts(T ), note that the map
v → Sv is a bijection between Verts(T ) and the maximal compact subgroups of IsomT .
Pick a representative vertex v of each orbit of Isom T ; the subgroup Ψ(Sv) of Isom T ′ is
compact and must therefore fix some vertex of T ′, and we define ψ(v) be any such vertex.
Extend ψ to a Ψ-equivariant map Verts(T )→ Verts(T ′). Now extend to a Ψ-equivariant
map ψ : T → T ′ by mapping each edge of T to a constant speed geodesic in T ′.

First we show that ψ is surjective. Since ψ(T ) is connected, nonsurjectivity of ψ
would imply that there is a vertex v′ of T ′ so that some component C of T ′−v′ is disjoint
from ψ(T ). Since T ′ is thornless, C is unbounded. But this contradicts cocompactness
of image(Ψ) in Isom T ′.

Next we show that ψ is injective on Verts(T ). If not, consider v1 6= v2 ∈ Verts(T )
such that ψ(v1) = ψ(v2) = w ∈ Verts(T ′). If A is the closure of the subgroup of Isom T
generated by Sv1 ∪ Sv2 , then using the fact that Sv1 and Sv2 are maximal compact
subgroups, it follows that A is a closed, noncompact subgroup of IsomT . Also, Ψ(A) is
a closed subgroup of Isom T ′, by properness of Ψ. But Ψ(A) is contained in Sw which is
compact, and so Ψ(A) is compact, contradicting properness of Ψ.

Next we show that for any vertex v ∈ Verts(T ), if v 6= x ∈ T then ψ(v) 6= ψ(x).
Arguing by contradiction, suppose ψ(v) = ψ(x) = w ∈ Verts(T ′). We may assume
x ∈ int(e) for some edge e of T . Arguing as above using properness of Ψ, since Sw is
compact it follows that the closure of the subgroup of IsomT generated by Sv ∪ Se is
compact, but Sv is a maximal compact subgroup and so Se ⊂ Sv. Let e1 ∗ · · · ∗ ek = e be
the unique embedded edge path in T which starts at v and ends with e. Since Se stabilizes
v it follows that Se stabilizes each edge in this edge path, and by applying Lemma 23 it
follows that the edges e1, . . . , ek are all stabilizer equivalent. Obviously v is not identified
with any point in the interior of e1, and so k ≥ 2. Let L be the stabilizer equivalence
class of e1, . . . , ek, and so either k = 2 and L = e1 ∗ e2 is a doubleton, or L is a line in T ;
in either case we derive a contradiction.

Case 1: L = e1∗e2. Let SL be the subgroup of IsomT stabilizing L. The restriction
of SL to L is a standard Z/2 reflection on an arc, and the map ψ : L → T ′ is Z/2
equivariant. The image ψ(L) is a subtree expressed as a union of two arcs ψ(e1) ∪ ψ(e2)
sharing at least one endpoint ψ(v1). By Z/2-equivariance it follows that for i = 1, 2 there
is a subsegment e′i of ei incident to vi such that ψ(e′1) = ψ(e′2), and the sets ψ(e1 − e′1),
ψ(e2−e′2) are disjoint from each other and from ψ(e′1) = ψ(e′2). Moreover, ψ(e1−e′1) 6= ∅
if and only if ψ(e2 − e′2) 6= ∅. But this contradicts that ψ identifies v0 with an interior
point of e2.

Case 2: L is a line. Say L = · · ·∗e−1∗e0∗e1∗· · ·∗ek ∗ek+1∗· · · . Let vi = ei−1∩ei,
i ∈ Z. The restriction to L of the stabilizer of L is a standard D∞ action on the line L. The
fixed points of the reflections in D∞ are precisely the vertices; let ri be the reflection fixing
vi. The even vertices {v2n} form one orbit under D∞, and the odd vertices {v2n+1} form
another orbit. The image L′ = ψ(L) ⊂ T ′ is the subtree of T ′ spanned by ψ(Verts(T )),

the group D∞ acts on L′, and the map L
ψ−→ L′ is D∞ equivariant. The action of D∞
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on L′ is evidently proper and cobounded, and since L′ is a tree it follows that there is a
D∞-invariant line ` ⊂ L′ on which the D∞ action is standard. Let wi ∈ ` be the fixed
point of ri. Note that for each wi, one of the following two properties holds, and these
properties are equivariant with respect to D∞: either wi = ψ(vi); or ψ(vi) 6∈ ` and wi is
the closest point to ψ(vi) on `. In either case, it is evident from this description that the
arc ψ(vi)ψ(vi+1) contains none of the w’s except for wi and wi+1, and therefore contains
none of the ψ(v)’s except for ψ(vi) and ψ(vi+1). But this contradicts that ψ(v0) lies on
ψ(vk−1)ψ(vk).

The argument in the last paragraph gives a little more information: it shows that for
any stabilizer equivalence class which is a line L, any two nonadjacent edges of L have
disjoint images under ψ.

We have shown that ψ : T → T ′ does not identify any vertex of T with any other
point of T .

Next we show, for any two nonadjacent edges e, e′ of T , that f(int(e))∩f(int(e′)) = ∅.
Suppose not: there exists x ∈ int(e), x′ ∈ int(e′) such that f(x) = f(x′) = y. Letting
A be the closure of the subgroup of Isom T generated by Se ∪ Se′ , it follows that Ψ(A)
stabilizes the point y. Using properness of Ψ it follows that A is compact. This implies
that A stabilizes some vertex v of T , and so Se ∪ Se′ ⊂ A ⊂ Sv. Let e = e0 ∗ · · · ∗ ek be
the shortest edge path from e to v, and similarly for e′ = e′0 ∗ · · · ∗ e′k′ . It follows that
Se ⊂ Sei , i = 0, . . . , k and Se′ ⊂ Se′

i′
, i′ = 0, . . . , k′. Applying Lemma 23 it follows that

the stabilizer equivalence classes L and L′ of e and e′ contain e0, . . . , ek and e′0, . . . , e′k′ ,
respectively, and so L and L′ are both incident to the vertex v. Also, we already know
that e, e′ are not stabilizer equivalent to each other because disjoint edges of a stabilizer
equivalence class have disjoint images, and so L 6= L′. Using the description above of
a stabilizer equivalence class and its image under ψ, and using the fact that int(e) and
int(e′) are disjoint from ψ(Verts(T )), we may reduce to the case that k, k′ ≤ 1; and since
e, e′ are not adjacent at least one of k, k′ is = 1. Consider the case where one of k, k′

equals 0, say k = 1, k′ = 0 (the other case, where k′ = k = 1, is similar and is left to
the reader). Then there must be x1 ∈ int(e1) such that ψ(x) = ψ(x1) = ψ(x′) = y in
T ′. Let w = e0 ∩ e1 and choose g ∈ Sw which interchanges e = e0 with e1, and so w
interchanges x with x1. By equivariance under g, the edge e′′ = g(e′) contains a point
x′′ such that ψ(x′′) = y, and by the argument just given it follows that the stabilizer
equivalence classes L′, L′′ of e′, e′′ are distinct but are adjacent to a common vertex. But
this is impossible, because e′, e′′ are separated from each other by the edges e0, e1 of the
line L, and the lines L, L′, L′′ are distinct stabilizer equivalence classes in T .

Next we show that each edge e of T contains a point denoted me such that ψ(x) 6=
ψ(me) for any x 6= me; we may choose the points me equivariantly with respect to IsomT .
The point me is called the midpoint of e and the closures of the two components of e−me

are called the halves of e. To see why me exists, let v, w be the endpoints of e. Let ev be
the longest subsegment of e which is identified via ψ with a subsegment of another edge
incident to v, and similarly for ew. It follows that ev ∩ ew = ∅ for otherwise there would
be edges e′, e′′ 6= e incident to v, w such that ψ(e′) ∩ ψ(e′′) 6= ∅, contradiction. We can
then take me to be any point of int(e)− (ev ∪ ew).

Now we may give a global description of the map ψ : T → T ′. Given a vertex v, define
Star(v) to be the union, over all edges e incident to v, of the half of e containing v. Note
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that Star(v) is invariant under Sv. The restriction of ψ to Star(v) is an Sv-equivariant
family of partial Stallings folds [Sta91]: the half-edges forming Star(v) are subdivided
and then folded, no two half-edges being entirely folded together. These are the only
identifications made by ψ. Note that for any half-edge e incident to v, if e is partially
folded with any other half-edge then all half-edges in the Sv orbit of e are partially folded
together to form a single path in T ′; these paths, one for each partially folded orbit of
v-half-edges, may then undergo further partial foldings among each other.

The description of the map ψ : T → T ′ shows that the edge-indexed graph Γ̂ =
T ′/Ψ(Isom T ) is a blowup of Γ: for any v ∈ Verts(T ), the partial folds performed on
Star(v) are represented downstairs in Γ by a blowup of the vertex p(v) of Γ, and doing this
for each vertex of Γ we obtain a blowup Γ← Γ̂. The induced map Γ̂ = T ′/Ψ(Isom T )→
T ′/ Isom T ′ = Γ′ is a covering map, by Lemma 10. By hypothesis, Γ has no blowup and
proper subcover, and so Γ̂ is isomorphic to Γ′. Also by hypothesis, Γ′ has no index 1
edges, and so the blowup is trivial and the map ψ : T → T ′ is an isometry.

This completes the proof of Proposition 22. ♦

Combining Proposition 22 with Theorem 1 we immediately have:

Corollary 24. A bounded valence, bushy, index 1 normalized tree T is maximally sym-
metric if and only if its quotient edge-indexed graph Γ = T/ Isom T has no blowup and
proper subcover. It follows that the correspondence taking a tree T to its quotient graph
T/ Isom T sets up a bijection between isometry classes of index 1 normalized maximally
symmetric trees and isomorphism classes of finite edge-indexed graphs with no index 1
edge and with no blowup and proper subcover. More generally, a bounded valence, bushy,
cocompact, thornless tree T is maximally symmetric if and only if the edge-indexed graph
Γ = T/ Isom T satisfies the following: each index 1 edge is of index 1–1; the collection
of these edges forms a forest F ; and the collapsed graph Γ/F has no blowup and proper
subcover. ♦

6.2 Proof of Theorem 2 and Corollary 3

Fix a bounded valence, bushy tree τ . Suppose that G is a uniform, cobounded subgroup
of τ . The inclusion map G → QI(τ) factors through a map α : G → Q̂I(τ) which is
a cobounded quasi-action of G on τ . Applying Theorem 8 there is a bounded valence,
bushy, cocompact tree T , a cobounded action φ : G → Isom T , and a quasi-conjugacy
f : τ → T from the quasi-action α to the action G. By trimming thorns we may assume
that T is thornless, and so the natural homomorphism IsomT → QI(T ) is an embedding.
Consider the edge-indexed graph Γ = T/ Isom T . Applying Corollary 21 there is a collapse
and subcover Γ

p−→ Γ1, and a blowup and subcover Γ1
q←− Γ2

µ−→ Γ3, such that Γ3 has no
index 1 edge and no blowup and proper subcover. The maps p, q, µ lift to quasi-isometries
of universal covering trees T

P−→ T1, T1
Q←− T2, T2

M−→ T3. Applying Corollary 24 the
tree T3 is maximally symmetric, and applying Theorem 1 the group IsomT3 is a maximal
uniform subgroup of QI(T3). The graphs Γ, Γ1, and Γ3 are their own minimal subcovers,
and so D(Γ), D(Γ1), and D(Γ3) equal Isom T , Isom T1, and Isom T3 respectively. We have
adf (G) < Isom T , adP (Isom T ) < Isom T1, ad−1

Q (Isom T1) = D(Γ2), and adM (D(Γ2)) <

Isom T3. Letting F = M ◦ Q̄ ◦ P ◦ f : τ → T3, where Q̄ : T1 → T2 is a coarse inverse
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of Q, it follows that adF = adM ◦ ad−1
Q ◦ adP ◦ adf : QI(τ) → QI(T3) is an isomorphism

inducing a bijection between uniform subgroups, and ad−1
F (Isom T3) is a maximal uniform

subgroup of QI(τ) containing G. This proves (1). Moreover, if G is a maximal uniform
cobounded subgroup of τ it follows that G = ad−1

F (Isom T3), proving the first sentence of
(2).

To prove the second sentence of (2), suppose that G = adf ′(Isom T ′) where T ′ is a
bounded valence, bushy, cocompact tree and Γ′ = T ′/ Isom T ′ has no index 1 edges, and

where f ′ : T ′ → τ is a quasi-isometry. We thus have a quasi-isometry T3
H=f ′−1◦F−−−−−−−→ T ′

with the property that adH takes Isom T3 into Isom T ′ by a continuous, proper, cocompact
monomorphism. Applying Proposition 22 it follows that adH = adH′ for some isometry
H ′ : T3 → T ′, proving (2).

To prove part (3) of the theorem, suppose that G,G′ are maximal uniform sub-
groups of QI(τ) and that FGF−1 = G′ for some F ∈ QI(τ). Applying part (2) we
have G = adf (Isom T ), G′ = adf ′(Isom T ′) for some maximally symmetric trees T and
quasi-isometries f : T → τ , f ′ : T ′ → τ . Also, part (2) shows that T, T ′ are uniquely
determined up to isometry by G,G′. Moreover, part (2) shows that T, T ′ are isometric
to each other, because the isomorphism ad−1

f ′ ◦adF ◦ adf : Isom(T ) → Isom(T ′) is equal
to adh for some isometry h : T → T ′. Thus, to each conjugacy class of maximal uniform
subgroups of QI(τ) there corresponds a well-defined isometry class of maximally symmet-
ric trees. This correspondence is a surjection, because for every maximally symmetric
tree T there exists a quasi-isometry f : T → τ , and so G = adf (Isom T ) is a maximal
uniform subgroup of QI(τ) by Theorem 1. Also this correspondence is an injection, for
suppose we have maximal uniform subgroups G = adf (Isom T ),G′ = adf ′(Isom T ′) where
T, T ′ are maximally symmetric, f : T → τ, f ′ : T ′ → τ are quasi-isometries, and T, T ′

are isometric; choosing an isometry h : T → T ′ it follows that F = [f ′ ◦ h ◦ f ] ∈ QI(τ)
conjugates G to G′.

We can prove part (4) of Theorem 2 by simply noting some examples of edge-indexed
graphs with no index 1 edge nor any blowup and proper subcover.

For unimodular examples, the edge-indexed graphs • p q • with p > q ≥ 2 clearly
cannot be pumped up: they have no proper subcovers; and they have no blowups. Their
universal covers give countably many isometry classes of maximally symmetric unimod-
ular trees.

For nonunimodular examples, consider edge-indexed graphs of the form

•

a

b

������� c

d@@@@@@@

•
ef
•

Assign integer values ≥ 2 to a, b, c, d, e, f so that the numbers a + f, b + c, d + e, a + 1, b +
1, c + 1, d + 1, e + 1, f + 1 are pairwise unequal. These numbers are the total indices that
can occur for vertices in any blowup, and it follows that each blown up graph has vertices
with distinct total indices and therefore has no proper subcover. Clearly we may make
the choices so that bdf

ace 6= 1 and so the edge-indexed graph is not unimodular.
See Proposition 25 below for a more satisfactory enumeration of examples.
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This completes the proof of Theorem 2. ♦

Proof of Corollary 3. Let G be a virtually free group of finite rank ≥ 2. There is a finite
graph of finite groups Γ′ whose fundamental group is isomorphic to G [KPS73], and so
G acts properly discontinuously and cocompactly on the Bass-Serre tree τ of Γ′. The
kernel of the action φ : G→ Isom τ is finite. By Theorem 2, the group φ(G) is contained
in a maximal uniform subgroup of QI(τ), and that subgroup is equal to adf (Isom T )
for some maximally symmetric tree T and some quasi-isometry f : T → τ . The action
ad−1
f ◦φ : G→ Isom T is properly discontinuous and cocompact, and the graph of groups

Γ = T/ ad−1
f ◦φ(G) has fundamental group isomorphic to G and Bass-Serre tree T . ♦

Finally, we improve upon Theorem 2 part (4) as follows:

Proposition 25. Let Γ be a finite, connected graph with no loops and no bigons and with
at least one edge. Then Γ has infinitely many distinct edge-indexings with no index 1 edge
and no blowup and proper subcover. Moreover, infinitely many of them are unimodular,
and if Γ is not a finite tree then infinitely many of them are nonunimodular.

Proof. One way to proceed with the proof is to construct sufficiently many examples, that
is, to describe some special scheme for constructing sufficiently many edge-indexings of Γ
with the desired properties. Instead we shall give a general scheme for enumerating all of
the appropriate edge indexings of Γ, in effect enumerating the maximally symmetric trees
T with T/ Isom(T ) isomorphic to Γ. From the description, the infinitude of appropriate
edge-indexings of Γ will follow.

The enumeration scheme is carried out completely for one example Γ, after the con-
clusion of the proof. The reader may want to refer to this example while perusing the
proof.

Instead of indexing the ends of Γ with actual numerical values, index them with
variables x1, . . . , xN . An actual edge-indexing of Γ without index 1 ends corresponds to
an assignment of (x1, . . . , xN ) ∈ {2, 3, . . . }N .

We shall construct X ⊂ RN , a finite union of affine subspaces of RN defined over Q,
such that an edge-indexing (x1, . . . , xN ) is in X if and only if there exists a blowup and
proper subcover for the edge indexing (x1, . . . , xN ). Then, when Γ is not a finite tree, we
shall construct a certain homogeneous subvariety Y ⊂ RN of degree ≥ 3 defined over Q,
not contained in any degree 1 subvariety except for all of RN , such that an edge-indexing
(x1, . . . , xN ) is in Y if and only if (x1, . . . , xN ) is a unimodular. The conclusions of the
theorem will quickly follow from the form of Y .

Let Γ F1←−− Γ1, . . . ,Γ FK←−− ΓK denote all possible blowups of Γ, where each end of Γk
is indexed with one of the variables x1, . . . , xN or with the integer 1, as follows. As usual
Fk denotes a subtree of Γk consisting of edges of index 1–1, the cellular map Γk → Γ
collapses each component of Fk to a point and is otherwise one-to-one, and under this
collapse there is a bijection between Ends(Γk)−Ends(Fk) and Ends(Γ). This bijection is
used to index Ends(Γk)−Ends(Fk) with the variable edge indices x1, . . . , xN . We assume
that one of these blowups, say Γ← Γ1, is actually the identity map on Γ, and so F1 = ∅.

Given k = 1, . . . , K, let µkj : Γk → Γkj , j = 1, . . . , J(k) denote all the proper sub-
covers of Γk, where Γkj is a graph with a variable ye indexing each end e ∈ Ends(Γkj).
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The even covering equations for µkj form a system Ekj of first degree equations in the
variables {x1, . . . , xN} ∪ {ye

∣∣ e ∈ Ends(Γkj)}.
We examine the even covering system Ekj more carefully. To each end e ∈ Ends(Γkj)

located at a vertex v ∈ Verts(Γkj), and to each vertex w ∈ Verts(Γk) ∩ µ−1
kj (v), there

corresponds an even covering equation whose right hand side is ye and whose left hand
side is a sum of those variables x1, . . . , xN labelling ends of µ−1

kj (e) ∩ Ends(w) plus an
integer equal to the cardinality of Ends(Fk) ∩ µ−1

kj (e) ∩ Ends(w); let Eewkj denote this
equation. Let Eekj be the system of equations Eewkj , w ∈ µ−1

kj (v); and let Ekj be the system
of equations Eekj , e ∈ Ends(Γkj).

If the system Ekj is inconsistent then we may discard Γ ← Γk → Γkj as a candidate
blowup and proper subcover. We may characterize inconsistency of Ekj as follows. Note
that for e 6= e′ the subsystems Eekj and Ee′kj have disjoint variable sets, and so the system
Ekj is consistent if and only if each of the subsystems Eekj is consistent. The subsystem
Eekj is inconsistent if and only if there exist w, w′ ∈ µ−1

kj (v) such that each of the two sets
µ−1
kj (e) ∩ Ends(w), µ−1

kj (e) ∩ Ends(w′) lies entirely in Ends(Fk) but these two sets have
different cardinalities.

Assume now that the system Ekj is consistent. In each subsystem Eekj , since the
variable ye occurs alone on the right hand side of each equation in Eekj , we may eliminate
ye; after this elimination, if there are any equations of the form (constant)=(constant) we
may eliminate them as well. This produces a new system of equations Ēekj in the variables
x1, . . . , xN . The system Ēkj is the union of the systems Ēekj for e ∈ Ends(Γkj); we call
Ēkj the system of reduced even covering equations for µkj . Let Xkj ⊂ RN denote the
solution set of Ēkj , an affine subspace of RN defined over Q.

We claim that if Ēkj is vacuous, meaning that Xkj = RN , then µkj : Γk → Γkj is a
graph isomorphism and so is not a proper subcover.

To prove the claim, assume that Ēkj is vacuous. Since the variables in distinct sub-
systems Ēekj are distinct, it follows that each Ēekj is vacuous. Let v be the vertex incident
to e. Vacuity of Ēekj implies one of two possibilities. In the first possibility, µ−1

kj (v) ⊂ Fk;
in this case each equation Eewkj has the form (constant)= ye, and so elimination removes
all these equations. In the second possibility, µ−1

kj (v) is a single vertex w; in this case Eekj
consists of the single equation Eewkj , with right hand side ye, and elimination of ye removes
this equation. In all other cases, Ēekj is nonvacuous.

Partition the set Verts(Γk) into two sets: V consists of all vertices incident to some
variably indexed end; and V ′ consist of all the rest, namely those vertices incident only
to ends of index 1, the interior vertices of Fk. It follows from the previous paragraph that
µkj(V ) ∩ µkj(V ′) = ∅ and that µkj is one-to-one on V . Since Γk has neither loops nor
bigons it follows further that µkj is one-to-one on the union of all edges with both ends
in the set V . Consider now the restriction of µkj to Fk; we have already seen that µkj
is one-to-one on Fk ∩ V and the remaining vertices of Fk are mapped disjointly from V .
But this implies that µkj is one-to-one on vertices and edges of Fk. Thus we see that µkj
is an isomorphism, proving the claim.

To summarize, we have shown that the edge-indexings of Γ which do have a blowup and
proper subcover are those which lie on a finite union X =

⋃
kj Xkj of codimension ≥ 1

affine subspaces of RN defined over Q. It follows that there are infinitely many edge
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indexings with integer values ≥ 2 that do not lie in X, and so infinitely many edge-
indexings with no index 1 edge and no blowup and proper subcover. If Γ is a finite tree
then this finishes the proof, because every edge-indexing of Γ is unimodular.

Suppose now that Γ is not a finite tree, but instead is a graph of rank R. Let c1, . . . , cR
be simple, closed, oriented edge paths whose corresponding 1-cycles give a basis for H1(Γ).
Let `(r) ≥ 3 be the number of edges in cr. Applying the canonical cocycle ξ to cr we
obtain an equation of the form

ξ(cr) =
xn1 · . . . · xn`(r)

xn`(r)+1 · . . . · xn2`(r)

where all 2`(r) of the variables are distinct. Setting this equal to 1 and clearing the
denominator we thus obtain the following homogeneous equation of degree `(r):

xn1 · . . . · xn`(r) = xn`(r)+1 · . . . · xn2`(r)

Let Y be the simultaneous solution variety of this system of equations for r = 1, . . . , R;
the points on Y with integer coordinates ≥ 1 are precisely the unimodular edge-indexings
of Γ. Note that rational points are dense in Y .

Clearly Y has codimension ≥ 1 and so there are infinitely many edge-indexings in the
complement of X ∪Y , that is, infinitely many nonunimodular edge-indexings which have
no index 1 edge and no blowup and proper subcover.

For the unimodular case, note that the homogeneous variety Y is not of degree 1,
indeed Y is not contained in any linear subspace of RN except for RN itself. To see why
we rewrite the defining equations for Y as follows. Choosing a maximal tree T of Γ we
may push all variables in T to the right hand side and all variables not in T to the left
hand side, and then reorder the variables, obtaining a set of defining equations for Y of
the form

x1

x2
= f1(x2R+1, . . . , xN )

...
x2R−1

x2R
= fR(x2R+1, . . . , xN )

where each fr is a quotient of homogeneous monomials of equal degree `(r)− 1 ≥ 2 with
no variable occurring more than once in fr. From this it is obvious that Y is not contained
in any proper linear subspace of RN .

Decompose X as X = X ′ ∪X ′′ where X ′ is the union of those Xkj which are homo-
geneous and X ′′ is the union of those which are not homogeneous. As we have just seen,
Y 6⊂ X ′, and it follows that the rational rays lying in Y −X ′ are dense in Y . For each
such ray ρ the intersection ρ∩X ′′ is finite, and so assuming that ρ points into the positive
orthant of RN it follows that the number of integer points on ρ −X ′′ with coordinates
≥ 2 is infinite. ♦
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An example We close with a consideration of the edge-indexed graph

Γ = • a b • c d •

We enumerate the thirteen different blowup and proper subcovers of Γ, writing down
their reduced even covering equations. We thus obtain X as a union of thirteen affine
subspaces of (a, b, c, d)-space, although it turns out that six subspaces suffice.

To help in the enumeration, consider an edge-indexed graph which is an arc with
m edges. A subcover without subdivision of such a graph must also be an arc, because
vertex valence cannot increase under a subcover. Moreover, a covering map (without
subdivision) from an m-edged arc to an n-edged arc must be an m/n-folding map, under
which the m edges of the domain are partitioned into m/n subarcs each with n-edges,
each mapped by a graph isomorphism to the range; this follows because the ends located
at a vertex of the domain must map surjectively to the ends located at the image vertex
of the range. A subcover with subdivision is similarly described, with the proviso that
each subdivision point must be a fold point.

We start by enumerating the proper subcovers of Γ itself, by choosing a subdivision
followed by a fold.

(1) Bifold Γ over a single edge; the reduced even covering equation is a = d.

(2) Subdivide the a–b edge and then trifold over a single edge; the equations are
a = b + c, d = 2.

(3) Subdivide the c–d edge and trifold; the equations are a = 2, d = b + c.

(4) Subdivide both edges and quadrifold; the equations are a = b + c = d.

Next there are the proper subcovers of the unique nontrivial blowup Γ′ of Γ:

Γ′ = • a b • 1 1 • c d •

The proper subcovers of Γ′ are:

(5) Trifold of Γ′; the equations are a = c + 1, d = b + 1. This subcover was depicted
earlier for (a, b, c, d) = (4, 5, 3, 6).

(6) Subdivide the a–b edge and quadrifold; the equations are a = b + 1 = d, c = 1.

(7) Subdivide the 1–1 edge and quadrifold; the equations are a = d = 2, b = c.

(8) Subdivide the 1–1 edge and bifold; the equations are a = d, b = c.

(9) Subdivide the c–d edge and quadrifold; the equations are a = c + 1 = d, b = 1.

(10) Subdivide the a–b and 1–1 edges and pentafold; the equations are a = b + 1 =
c + 1, d = 2.

(11) Subdivide the a–b and c–d edges and pentafold; the equations are a = b+1 = 2, d =
c + 1 = 2, or equivalently, a = d = 2, b = c = 1.
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(12) Subdivide the 1–1 and c–d edges and pentafold; the equations are a = 2, d = c+1 =
b + 1.

(13) Subdivide all three edges and hexafold; the equations are a = b + 1 = c + 1 = d.

Let X(i) be the affine subspace defined by case (i). Then clearly X(1) = {a = d} contains
X(i) for i = 4, 6, 7, 8, 9, 11, 13. Thus we may eliminate the latter seven equations, and we
obtain the following set of six affine subspaces whose union is X:

X(1) = {a = d}
X(2) = {a = b + c, d = 2}
X(3) = {a = 2, d = b + c}
X(5) = {a = c + 1, d = b + 1}

X(10) = {a = b + 1 = c + 1, d = 2}
X(12) = {a = 2, d = c + 1 = b + 1}

The edge-indexings of Γ which correspond to maximally symmetric trees are precisely the
quadruples (a, b, c, d) of integers ≥ 2 which lie on none of these six subspaces.
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