MATH 215, FALL 2018 (WHYTE) REVIEW PROBLEMS

- (1) Show that n = 3 is the only natural number with $n^2 > 2^n$
- (2) Show that if $f : A \to B$ and $g : B \to C$ are bijective functions then $g \circ f$ is bijective.
- (3) If a and b are relatively prime then there is an $n \in \mathbb{N}$ such that $a^n \equiv 1 \mod b$
- (4) If $a^2|b^2$ then a|b
- (5) If $f: A \to B$ is an injective function then for any A_1 and A_2 , subsets of A, $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$
- (6) If $gcd(n_1, n_2) = 1$ then for any r_1 and r_2 there is an a with $a \equiv r_1 \mod n_1$ and $a \equiv r_2 \mod n_2$
- (7) If n is prime then n does not divide (n-1)!
- (8) For every $n\in\mathbb{N}$ the sum of the odd numbers less than 2n is equal to n^2

The converses of all of (2) through (6) are true, and the converse of (7) is true except for n = 4. Can you formulate these statements? Can you prove them?