WORKSHEET ON NUMBERS, MATH 215 FALL
18(WHYTE)

We start our study of numbers with the integers:

Z={.,-2-1,0123,...}

and their subset of natural numbers:

N=1{1,23,...}

For now we will not worry about defining or justifying the most basic
properties : we will assume that we know what the integers and natural
numbers are, that we know how to add and multiply them, and that rules
like commutativity, associativity, and distributivity all hold. The first thing
we wish to study is divisibility:

Definition 0.1. Let a and b be two integers. We say that a divides b

if there is an integer q so that b = aq. We will use the notation alb as
shorthand for this property.

Proposition 0.2. Let a, b, and ¢ be integers. If alb and alc then a|(b+ c).
Proposition 0.3. Let a, b, and ¢ be integers. If alb then a|bc.

Question 0.4. Which integers divide zero? Which are divisible by zero?
Proposition 0.5. Let a, b, and ¢ be integers. If alb and alc then a|(b— ¢).
Question 0.6. Which integers divide one? Which are divisible by one?

Proposition 0.7. Let a, b, ¢, s and t be integers. If alb and alc then
a|(sb + tc).

Proposition 0.8. Let a, b, and c be integers. If alb and b|c then alc.

Question 0.9. Does 2|4? Does 2|37 How can you prove your answers?
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As the last question indicates, we are missing some of the basic structure
of the integers. The next piece that we want to incorporate is that we can
compare integers to see which is bigger. This is what mathematicians call
an ordering. To be more precise:

Definition 0.10. An integer n is positive if and only if n € N

Definition 0.11. For any two integers a and b, we say a < b if and only if
b — a 1is positive.
We can now prove many of the basic facts we know about comparing

integers

Problem 0.12. Prove the following (you may use that the sum and product
of natural numbers are natural numbers)

(1) If a < b then for any ¢ we have a+c <b+c¢

(2) fa<band b<cthena<c

(3) For any a and b exactly one of the following holds: a < b, b < a, or
a=1>

(4) If a is positive and b is negative then ab is negative

(5) If a is negative and b is negative then ab is positive

(6) Let a and b be integers with a < b, then for all ¢ > 0 we have ac < bc
and for all ¢ < 0 we have be < ac

We can also now establish some facts that get used quite often:
Proposition 0.13. Let a and b be integers with ab =0 thena =0 orb =0

Proposition 0.14. Let a, b, and ¢ be integers with ¢ # 0 then ac = bc —>
a=1"

This almost resolves the question at the end of the last page:
Proposition 0.15. If q is an integer with 2qg = 3 then 1 < q < 2.

To show that there aren’t any such ¢ we need one more fact about the
integers:

Axiom 0.16. There are no integers n with 0 < n < 1.
Using this you can now show:

Proposition 0.17. 2 does not divide 3
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We now have an almost complete list of axioms for the integers and so can
prove most facts we want. What we are missing is an axiom to guarantee
that if we start counting we eventually get to every natural number. This
can be formulated a number of ways, but we will start with :

Well-ordering Axiom: If S is any non-empty subset of N then there is
a smallest element sy € S (here ”smallest” means that for any sy < s for all
other s € S.)

This may not at first seem to be the same idea as claiming that we eventu-
ally reach every element of N by counting. Here is a more direct translation
of that idea”

Proposition 0.18. Let A C N and suppose that 1 € A and for every a € A
we also have a +1 € A, then A =N.

The idea here is that we are assuming 1 € A, and applying the second
assumption, 1 +1 = 2 must also be in A. But then, applying it again,
241 =3isin A, etc. In other words, the assumptions here say roughly
that A contains all the numbers you can reach by counting. The conclusion
asserts that this must be all the natural numbers, which is a way of saying
that every natural number can be reached by counting. We can prove this
from the Well-ordering axiom as follows:

Let S be the set N\ A. If S is empty then A = N as claimed, so we
just need to rule out any other possibility. If S is not empty then by the
well-ordering axiom there is a smallest sginS. What can sg be? It can’t be
1 since we assumed that 1 is in A, so we must have sy > 1. Then consider
the number n = sg — 1. Since sg > 1 we have n > 0 so n € N. We also know
that n < sy so, since sg is the smallest element of S, n must not be in S.
That means that n € A. But then our assumption says that n 41 is also in
A, and n+ 1 = s so sg is in A. That is impossible since sq is also known
to be in §.

This proof outline is common : we what to show something is true for
all n € N, so we look at the set of numbers where it fails to hold and try
to prove it is empty. If it isn’t empty then it has a smallest element s (by
well-ordering again). This is the smallest natural number for which our de-
sired statement is false, so it must be true for s — 1 (and all other smaller
numbers), and we can often use this to contradict things. Here’s a more
concrete example:

Proposition 0.19. Let n be a natural number. Fither n = 2q for some
integer q or n = 2q + 1 for some integer q.

As before, let S be the set of natural numbers which are neither 2¢ for
any ¢ nor are 2q + 1 for any q. Our goal is to show that S is empty. If not,
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then it has a smallest element, so. Since 1 = 2(0) + 1 we know that s > 1,
so sg — 1 is also a natural number. Since sy — 1 < sy and sg is the smallest
element of S we must have sg — 1 not in S. This means that sg — 1 is either
of the form 2q or 2q + 1.

In the first case, so — 1 = 2q we can add one to both sides to get sy = 2q,
which is impossible since sy € S.

Similarly, if so — 1 = 2g + 1 then sp = 2¢+ 2 = 2(q¢ + 1) so sp is twice
some integer, which is again impossible since sg € S.

The only possibility left is that S is empty, so that no such sg exists. [

Alternatively, you can prove such statements via Proposition 0.18. For
example, let A be the set of natural numbers which can be written as 2q or
2¢q + 1 for some integer q. Then since 1 = 2(0) + 1 we have 1 € A and, if a
is in A then either:

a = 2q for some ¢, soa+1=2¢g+1andsoa+1€ Aor
a=2q+1forsomeq,soa+1=2¢g+2=2(qg+1)soa+1¢€ A

Since, in both cases, we have a +1 € A we can apply Proposition 0.18 to
conclude A = N. O

Problem 0.20. Here are a few more things one can prove with these meth-
ods, try to write the proof both directly from the well-ordering axiom and via
proposition 0.18:

(1) Every natural number is 3¢, 3¢ + 1, or 3¢ + 2 for some integer q.

(2) For every natural number n, n < 2"

(3) For all n, %w" = na™ ! (this assumes you know the product rule
and that %x =1
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We often want to use these arguments in more general settings: for subsets
of the integers, with largest elements rather than smallest, and so on. To
state these we start with some definitions:

Definition 0.21. If S is a subset of Z then an integer n is a lower bound
for S ifn < s foralls € S. A set which has a lower bound is called bounded
from below. Similarly, an integer m is an upper bound for S if s < m for all
s € 8, and a set with an upper bounded is called bounded from above. A set
which is both bounded from above and from below is simply called bounded.

Proposition 0.22. Here are some basic facts and questions:

(1) Ifn is a lower bound for S and m < n then m is also a lower bound
for S.

(2) If n is a lower bound for S and T C S then n is also a lower bound
forT.

(3) Can you formulate versions of the above for upper bounds?

(4) The set N is bounded from below. Is it bounded from above?

(5) If S is the set of odd integers, is S bounded from above? from below?

With these terms in mind we can state a more general form of the well
ordering principle:

Proposition 0.23. If S is a non-empty set of integers which is bounded
from below then S contains a smallest element. (Hint: shift S into N by

adding something, apply the basic well ordering principle, and then shift
back)

Similarly, we have:

Proposition 0.24. If S is a non-empty set of integers which is bounded
from above then S contains a largest element. (Hint #1: multiply by -1,
apply the lower bound version, then multiply by -1 again. Hint #2: For a
completely different proof, let T be the set of upper bounds for S and apply
the well ordering principle to T')

These are all the basic rules (called ”axioms”) that we need to say what
the properties of the integers are that distinguish them from all other kinds
of numbers. These are listed on the next page. A good exercise is to look
back over all the properties we assumed up until this point and make sure
you know how they follow from the things listed (the most challenging to
deduce is probably that there is no integer between 0 and 1).
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AXIOMS for the Integers:

(1) If a and b are integers then a + b and ab are integers.

(2) For any a and b, a + b = b+ a and ab = ba.

(3) For any a, b, and c¢. a+ (b+¢) = (a + b) + ¢ and a(bc) = (ab)c.

(4) For any a,b, and ¢, a(b+ ¢) = ab+ ac.

(5) There are integers 0 and 1 so that for any a, a =a+ 0 = al.

(6) For any a there is a b with a + b = 0.

(7) For any a and b exactly one of the following is true:
ea=">
e a<hb
e b<a

(8) If a<band b < cthena<ec.

(9) If a < b then for any ¢, a + ¢ < b+ c.

(10) If @ > 0 and b > 0 then ab > 0.

(11) (Well ordering) If S C Z is non-empty and bounded from below then
S contains a smallest element.
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Definition 0.25. Let a and b be integers and let n be a natural number.
We say a is congruent to b modulo n if n|(a — b). We use the notation
a = b mod n for this property.

Problem 0.26. Decide whether each of the following statements is true and
Justify your answers:

e 2 =93 mod 13
e 27 =4 mod 5
e 15=—-6mod 7
e —3=-8mod 2

Proposition 0.27. If a is an integer and n a natural number then a = a
mod n.

Proposition 0.28. Let a and b be integers and n a natural number. If a = b
mod n then b = a mod n.

Proposition 0.29. Let a, b, and ¢ be integers and n a natural number. If
a=bmodn and b =c mod n then a = c mod n.

Proposition 0.30. Let a, b, and ¢ be integers and n a natural number. If
a=b modn then a+c=b+ c mod n.

Proposition 0.31. Let a, b, and ¢ be integers and n a natural number. If
a =b mod n then ac = bc mod n.

Proposition 0.32. Let a, b, and ¢ be integers and n a natural number. If
a=bmodn and b= c modn then a = c mod n.

Proposition 0.33. Let a and b be integers and n a natural number. If a = b
mod n then a®> = b*> mod n.

Proposition 0.34. Let a and b be integers and n a natural number. If a = b
mod n then a®> = b mod n.

The last two propositions suggest the following:

Conjecture 0.35. Let a and b be integers and n and m natural numbers.
If a = b mod n then a™ = b™ mod n.

Do you believe this conjecture? Can you prove it?
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Proposition 0.36. Let a be an integer and b a natural number. There is
an integers q and r with 0 < r < b such that:

a=bg+r

Here g is called the quotient and r is called the remainder. Here’s a
hint: think about all possible ¢ and » > 0 that make the equation hold
(without the assumption r < b) and then use well ordering to find the
smallest such 7.

This proposition is often called the division algorithm because it is
tells you exactly what one gets from old fashioned long division of natural
numbers - a quotient and a remainder. However there’s a subtlety here -
the proposition says that ¢ and r exist, but not that they are unique - in
other words the division problem might have more than one right answer.
Obviously that’s not what we expect. Here’s how that is phrased precisely
(make sure you understand why, then prove it):

Proposition 0.37. Let b a natural number and q1, g2, r1, ro integers with
0<7ri<band 0 <ry <b such that 1b+ r1 = qb+ r9 then g1 = q2 and
rL =T9.

In particular, we get the following about congruences:

Proposition 0.38. For any integer a and natural number n there is exactly
one integer b with 0 < b < n such that a = b mod n.

Definition 0.39. A natural number n > 1 is prime if the only natural
numbers m with min are m =1 and m =n

Proposition 0.40. If n > 1 is a natural number then there is a prime
number p such that p|n.

Proposition 0.41. Fvery natural number n > 1 can be written as a product
of primes:

I
where p1,p2,...,pm are prime numbers and k; are natural numbers.

This is the prime factorization theorem. It usually also comes with a
uniqueness statement. Can you figure out what this should say? It tuns out
that the uniqueness is more subtle than it appears, so we will need to develop
some other ideas before tackling it. We start with another definition:

Definition 0.42. Given two integers a and b a common divisor is an
integer d satisfying such that dla and d|b.

Proposition 0.43. Show that unless a and b are both zero they have a
greatest common divisor (hint: fist prove that if x and y are natural numbers
and x|y then z <y )

Problem 0.44. Let n be a natural number. Find the greatest common
divisor of n and 0.
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Proposition 0.45. Let p be a prime number. Show that for any integer a
the greatest common divisor of p and a is either p (if p|la) or is 1.

Proposition 0.46. Let a and b be natural numbers. Write a = bq+r using
the division algorithm. Show that the common divisors of a and b are the
same as the common divisors of r and b.

This gives a practical way to compute greatest common divisors: take
the larger of a and b and replace it with its remainder when divided by the
other, and repeat until one of the numbers is zero.

Problem 0.47. What is the greatest common divisor of 120 and 168¢ of
59 and 10167

Question 0.48. Can you show that this process always works?

There is another surprising way of characterizing the ged. For two num-
bers a and b, we think about all the numbers you can get by adding multiples
of a and b together. We can imaging this by thinking of a¢ and b as dollar
values of bills and then asking what prices can paid with them. For example,
if your country only issues a 6 dollar bill and a 14 dollar bill, can you buy
something that costs 10 dollars? Yes - you pay with two 14 dollar bills and
get three 6 dollar bills back in change. Can you buy something that costs
15 dollars? No - all the bills are worth an even number of dollars so there is
no way to get an odd net transaction. Formulated more abstractly:

Let S(a,b) = {na+mb:n,m € Z}.

Proposition 0.49. If ¢ is a common divisor of a and b then c|s for all
s € S(a,b)

Proposition 0.50. If s € S(a,b) then gcd(a,b)|s.
Proposition 0.51. If s € S(a,b) then sz € S(a,b) for all x € Z
Proposition 0.52. If S(a,b) = Z if and only if 1 € S

Proposition 0.53. The set S(0,0) is {0}. For any other a and b the set
S(a,b) is infinite.

Proposition 0.54. If a|b then S(a,b) is precisely the set of multiples of a.

The main fact we are aiming to prove is a more general version of the last
statement:

Proposition 0.55. For any a and b in Z, not both zero, the set S(a,b) is
precisely the set of multiples of ged(a,b).

Problem 0.56. Show that proposition 0.55 is equivalent to the statement
that ged(a,b) € S(a,b).



10 WORKSHEET ON NUMBERS, MATH 215 FALL 18(WHYTE)

The key ingredient in the proof of proposition 0.55 is this:

Proposition 0.57. Let s € S(a,b) and write s = aq + r using the division
algorithm, then r € S(a,b) (note that the same works if we divide by b
instead of a).

Using that you can prove:

Proposition 0.58. If ¢ is the smallest positive element of S(a,b) then c is
a common divisor of a and b.

This is almost enough to finish the proof of proposition 0.55. The only
missing piece is to show that this ¢ must be the greatest common divisor,
not a smaller one. But using the earlier propositions we know that ¢ must
be divisible by ged(a, b).

Problem 0.59. Put all of the above together to give a complete proof of
Proposition 0.55.



