MODULAR ARITHMETIC, MATH 215 FALL 2018 (WHYTE)

We are used to dividing the integers in to even and odd numbers:

$$Even = \{\dots, -2, 0, 2, 4, \dots\}$$

and

$$Odd = \{\ldots, -3, -1, 1, 3, 5, \ldots\}$$

and we know the rules for arithmetic :

Even + Even = EvenEven + Odd = OddOdd + Odd = Even

and

 $Even \times Even = Even$ $Even \times Odd = Even$ $Odd \times Odd = Odd$

We can phrase this a bit more carefully using our discussions of congruences and the division algorithm. The evens are the integers congruent to 0 mod 2 and the odds are the numbers congruent to 1 mod 2. The rules that let us determine which type we get when adding or multiplying say :

Proposition 0.1. Let a and b be integers, then:

- (1) If $a \equiv 0 \mod 2$ and $b \equiv 0 \mod 2$ then $a + b \equiv 0 \mod 2$ and $ab \equiv 0 \mod 2$
- (2) If $a \equiv 0 \mod 2$ and $b \equiv 1 \mod 2$ then $a + b \equiv 1 \mod 2$ and $ab \equiv 0 \mod 2$
- (3) If $a \equiv 1 \mod 2$ and $b \equiv 1 \mod 2$ then $a + b \equiv 0 \mod 2$ and $ab \equiv 1 \mod 2$

We can generalize this to equivalence modulo numbers other than 2. To begin with, when looking at equivalence modulo n, there are n different classes, not just 2:

Proposition 0.2. Let n be a natural number. For any integer a there is exactly one r with $0 \le r < n$ so that $a \equiv r \mod n$.

And then we can see that if you know what class a and b are in then we know what classes a + b and ab are in:

Proposition 0.3. Let n be a natural number. For any integers $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then:

- (1) $a + b \equiv a' + b' \mod n$
- (2) $ab \equiv a'b' \mod n$

Question 0.4. Why do we need to work with congruence classes - can't we just work with the two types of numbers : those divisible by n and those not divisible by n? What goes wrong?

This "arithmetic modulo n" is an example of what mathematician call a **ring** - a set of objects that can be added and multiplied and where most of the usual axioms of arithmetic hold:

Proposition 0.5. For any $n \in \mathbb{N}$ the following hold:

- (1) For any a and b we have $a + b \equiv b + a \mod n$ and $ab \equiv ba \mod n$
- (2) For any a, b, and c we have $(a + b) + c \equiv a + (b + c) \mod n$ and $(ab)c \equiv a(bc) \mod n$
- (3) For any a, b, and c we have $(a+b)c \equiv ac+bc \mod n$
- (4) For any a we have $a + 0 \equiv a \mod n$ and $a \times 1 \equiv a \mod n$
- (5) For any a there is a b with $a + b \equiv 0 \mod n$

All of these follow almost immediately from the corresponding axioms from \mathbb{Z} . But be careful, not everything is quite as simple as it looks. For example if we are working mod 5, so that set of remainders are $\{0, 1, 2, 3, 4\}$. In statement (5) above for a = 2 the corresponding b is 3 (we can't take b = -2 as that's not on our list, but $-2 \equiv 3 \mod 5$ and 3 is on the list) To get some practice with modular arithmetic, here are some calculations

Problem 0.6. Which of the following are true modulo 12?

- (1) Does $5x \equiv 6 \mod 12$ have a solution? How many?
- (2) Does $4x \equiv 6 \mod 12$ have a solution? How many?
- (3) Does $x^2 + 1 \equiv 0 \mod 12$ have a solution? How many?
- (4) If $xy \equiv 0 \mod 12$ does it follow that $x \equiv 0 \mod 12$ or $y \equiv 0 \mod 12$

The last part of this problem is the key to many questions of this sort, and it turns out to be closely related to Euclid's lemma.

Proposition 0.7. Show that if p is a prime number then $xy \equiv 0 \mod p$ implies that $x \equiv 0 \mod p$ or $y \equiv 0 \mod p$

on the other hand

Proposition 0.8. Show that if n is composite then there are x and y with $x \neq 0 \mod n$ and $y \neq 0 \mod n$ but where $xy \equiv 0 \mod n$

This says that arithmetic modulo primes is better behaved, for example:

Proposition 0.9. Show that if p is a prime number then every equation of the form $ax \equiv b \mod p$ with $a \not\equiv 0 \mod p$ has at most one solution.

and

Proposition 0.10. Show that if p is a prime number then if $x^2 \equiv y^2 \mod p$ then $x \equiv y \mod p$ or $x \equiv -y \mod p$

In some ways the arithmetic modulo a prime is even better behaved than for the integers. One of the things that makes the arithmetic of the integers complicated is that you can't always divide, but modulo a prime you can. To see this, start by proving there are reciprocals:

Proposition 0.11. Show that if p is a prime number then for every $a \neq 0$ mod p there is a b with $ab \equiv 1 \mod p$ (hint: Use the same fact that we use in the proof of Euclid's lemma - that there are n and m with an + pm = 1)

and from there:

Proposition 0.12. Show that if p is a prime number then every equation of the form $ax \equiv b \mod p$ with $a \not\equiv 0 \mod p$ has exactly one solution.

For arithmetic modulo n which is composite, this only sometimes works:

Proposition 0.13. Show that if n is a natural number then given an a there is a b with $ab \equiv 1 \mod n$ if and only if gcd(a, n) = 1 (hint: Again, copy the proof of Euclid's lemma)