MATH 215, FALL 2018 (WHYTE) SAMPLE MIDTERM

- (1) Decide which of the following statements about sets are true and which are false (you do not need to justify your answers):
 - (a) $(A \cup B) \cap (C \cup D) = (A \cap C) \cup (B \cap D)$
 - (b) $(A \cup B^c) = (A^c \cap B)^c$
 - (c) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

Although the problem does not ask for proofs or counter-examples, I will give some here for reference

- (a) is False: for example, let A = D = [0,1] and B = C = [2,3] then the left hand side is $[0,1] \cup [2,3]$ but the right hand side is empty
- (b) is True: To prove it, suppose $x \in (A^c \cap B)^c$. By the definition of complement, this means x is not in $A^c \cap B$. By the definition of intersection, this means x is not in both of A^c or B. In other words, either x is not in A^c or x is not in B. This means exactly that x is in $(A^c)^c \cup B^c$. Since $(A^c)^c = A$, we have $A \cup B^c$ as claimed.
- (c) is True: The proof of this was given in class.

- (2) For each of the functions below, decide whether they are injective and/or surjective(you do not need to justify your answers):
 - $f:[0,\infty)\to[0,\infty)$ defined by $f(x)=x^2$
 - $g: \mathbb{N} \to \mathbb{N}$ given by $g(n) = n^2$
 - $h: \mathbb{Z} \to \mathbb{Z}$ given by h(n) = 3n 7
 - $k : \mathbb{R} \to \mathbb{R}$ given by k(x) = 3x 7
 - $l:\{cat,ball,dog,door\} \rightarrow \{a,b,c,d\}$ defined by sending each word to its first letter

f is both surjective and injective (note that it is important that the domain and range are the sets of non-negative reals, as a map $\mathbb{R} \to \mathbb{R}$ it is neither)

g is injective (since if $n^2=m^2$ with $n\neq m$ then n=-m but the second is impossible since $\mathbb N$ does not contain negative numbers). It is not surjective - for example, there is no natural number n with $n^2=2$

h is injective (3n-7=3m-7 can only happen when n=m) but not surjective (for example 3n-7=0 has no solutions in \mathbb{Z})

k is both injective (3x-7=3y-7 can only happen when x=y) and surjective (since 3x-7=y has a solution $x=\frac{y+7}{3}$ which is a real number whenever y is)

l is neither injective (since l(dog) = l(door) = d) nor surjective (as none of the words in the domain start with "a").

- (3) Let $f: A \to B$ be a function
 - (a) Prove that for any set $S \subset B$ we have $f(f^{-1}(S)) \subset S$
 - (b) Prove that if f is surjective then for any set $S \subset B$ we have $S \subset f(f^{-1}(S))$
 - (c) Given an example to show that (b) is false without the assumption that f is surjective.

Lets start by unpacking what $x \in f(f^{-1}(S))$ means. By the definition of the image of a set, $x \in f(f^{-1}(S))$ means that there is a $y \in f^{-1}(S)$ with f(y) = x. Likewise, using the definition of inverse image, $y \in f^{-1}(S)$ means that $f(y) \in S$. Combining these, $x \in f(f^{-1}(S))$ if and only if there is a y with f(y) = x and $f(y) \in S$.

- (a) now follows immediately: if $x \in f(f^{-1}(S))$ then we have shown that there is a y with f(y) = x and $f(y) \in S$. But f(y) = x and $f(y) \in S$ certainly implies that $x \in S$.
- (b) is similar. If we have $x \in S$ and f surjective then there is a y with f(y) = x. Since we assumed we started with $x \in S$ then f(y) = x means $f(y) \in S$ so the characterization of $f(f^{-1}(S))$ we worked out shows that $x \in f(f^{-1}(S))$ so $S \subset f(f^{-1}(S))$.
- (c) if f is not surjective then our argument breaks down in (b) because there doesn't need to be a y with f(y) = x. Just about any example of such an f will work: for example, if $f(x) = \sin x$ then since f(x) = 2 is impossible, we can take any S that contains 2, say $S = [0, \infty)$ and check that f(f-1(S)) is smaller than S (because 2 is in S and cannot be in the image of f of anything.

- (4) Suppose $f: A \to B$ and $g: B \to C$ be functions. Decide whether each of the following is true or false and justify your answer with a proof or counter-example.
 - (a) If f and g are injective then $g \circ f$ must be injective
 - (b) If f is not injective then $g \circ f$ cannot be injective
 - (c) If g is not injective then $g \circ f$ cannot be injective
 - (a) is True and the proof has been discussed several times in class.
 - (b) is True: Since f is not injective, there are $a_1 \neq a_2$ so that $f(a_1) = f(a_2)$. Then $g(f(a_1)) = g(f(a_2))$, or written differently, $g \circ f(a_1) = g \circ f(a_2)$, so $g \circ f$ is not injective.
 - (c) is False: for example, $g(x) = x^2$ is not injective, but if $f(x) = e^x$ then $g \circ f(x) = g(f(x)) = (e^x)^2 = e^{2x}$ is injective. The point here is that g not being injective means there are $b_1 \neq b_2$ so that $g(b_1) = g(b_2)$, but g(f(x)) only sees the elements of B that are in the image f(A), so if this image misses one of the b_1 or b_2 then the composition can still be injective. In the example given this happens because x^2 is not injective only because it ignores signs, but e^x is always positive so there are never any negative numbers that are squared in constructing the composition.