MATH 445, PROBLEM SET # 2

(1) Let X be a Hausdorff topological space. Let $K(X)$ be the set of non-empty compact subsets of X. We define a topology on $K(X)$ as follows and study its properties.

(a) Given a finite set $F = \{U_1, \ldots, U_n\}$ of open sets in X define a set V_F in $K(X)$ whose elements are the compact subsets of X contained in the union of the U_i and which intersect every U_i in a non-empty set. Prove that the collection of V_F for all possible F are a basis for some topology on $K(X)$. For the remainder of this problem let $K(X)$ be given this topology.

(b) Prove that $K(X)$ is Hausdorff.

(c) Prove that for any $n \in \mathbb{N}$ the map $X^n \to K(X)$ sending (x_1, \ldots, x_n) to the set $\{x_1, \ldots, x_n\}$ is continuous.

(d) Prove the the subset of $K(X)$ consisting of all finite subsets of X is dense in $K(X)$.

(e) If $A \subset X$ let $K(A) \subset K(X)$ be those compact sets in X which are subsets of A. Prove that $K(A)$ is open in $K(X)$ if $A \subset X$ is open and closed in $K(X)$ if A is closed in X.

(f) Show that $K(X)$ is connected iff X is connected.

(g) Show that if X is non-compact then $K(X)$ is non-compact.

(h) (harder) Is it true that X compact implies $K(X)$ compact?

(2) Show that if X and Y are compact and Hausdorff and $f : X \to Y$ is a continuous bijection then f is a homeomorphism. Give examples to show you cannot omit either hypothesis.

(3) For any space X we define its one point compactification, X^+, as the set $X \cup \{\infty\}$ with the topology whose open sets are of two kinds: open subsets of X and subsets $U \cup \{\infty\}$ where $U \subset X$ is open with $X \setminus U$ compact.

(a) Show that this does define a topological space and that it is compact.

(b) Show that the inclusion map of X into X^+ is continuous and that the image is dense if X is non-compact.

(c) If X is Hausdorff is X^+ Hausdorff? If not, what extra assumptions are needed?

(4) Show that the Cantor set ($\{0,1\}^\mathbb{N}$ with the product topology) is compact.