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Let M be R3 equipped with the metric in which the following vector
fields:

U =
∂

∂x
+ y

∂

∂z

V =
∂

∂y

and

W =
∂

∂z

are an orthonormal basis.

1. Preliminaries

Since we’re given the metric via an orthonormal basis of vector fields
which are not coordinates, we need to compute the Lie brackets. This
gives:

[U,W ] = [V,W ] = 0

and

[U, V ] = −W
It will also be convenient to sometimes switch the basis os vector

fields ∂
∂x

, ∂
∂y

, and ∂
∂z

. The transformation to these from U ,V , and W
is:

∂

∂x
= U − yW

∂

∂y
= V

∂

∂z
= W

1
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2. The Levi-Civita Connection

Our general formula for the Levi-Civita connection says:

2 < DAB,C >= A < B,C > +B < A,C > −C < A,B >

+ < [A,B], C > − < [A,C], B > − < [B,C], A >

If the vector fields are part of an orthonormal basis, then all their
inner products are constant (and equal to 0 or 1) and so the first three
terms are zero. The only non-zero Lie bracket among U , V , and W is
[U, V ] = −W , so the only way to get any non-zero terms with A, B,
and C coming from U , V , and W is to have each occur once, in which
case < [U, V ],W > occurs as exactly one of the terms, possibly with a
minus sign. In other words:

< DUV,W >= −1

2

< DVU,W >=
1

2

< DUW,V >=
1

2

< DWU, V >=
1

2

< DVW,U >= −1

2

< DWV, U >= −1

2
and all other such inner product terms are zero. Thus, since U , V ,

W is an orthonormal basis, we get:

DUV = −1

2
W

DVU =
1

2
W

DUW = DWU =
1

2
V

DVW = DWV = −1

2
U

DUU = DV V = DWW = 0

This determines the connection via linearity and the Leibnitz rule.
In particular, we can get the connection in coordinates from this easily.
For example:
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D ∂
∂x

∂

∂y
= DU−yWV = DUV − yDWV

= −1

2
W +

1

2
yU = −1

2

∂

∂z
+

1

2
y(
∂

∂x
+ y

∂

∂z
)

=
1

2
(y
∂

∂x
+ (−1 + y2)

∂

∂z
)

similarly, we compute:

D ∂
∂x

∂

∂z
=

1

2

∂

∂y

D ∂
∂x

∂

∂x
= −y ∂

∂y

D ∂
∂y

∂

∂y
= D ∂

∂z

∂

∂z
= 0

D ∂
∂y

∂

∂z
= −1

2
(
∂

∂x
+ y

∂

∂z
)

3. Geodesics

We will try to understand a geodesic σ(t) = (x(t), y(t), z(t)). We
have two choices: we can compute in coordinates, or convert to the
orthonormal basis.

In coordinates, we write c′(t) = x′(t) ∂
∂x

+ y′(t) ∂
∂y

+ z′(t) ∂
∂z

. As usual,

when we expand the geodesic equation Dc′c
′ = 0 in coordinates, we

get:

x′′
∂

∂x
+ y′′

∂

∂y
+ z′′

∂

∂z
+ x′

2
D ∂

∂x

∂

∂x
+ y′

2
D ∂

∂y

∂

∂y
+ z′

2
D ∂

∂z

∂

∂z

+2x′y′D ∂
∂x

∂

∂y
+ 2x′z′D ∂

∂x

∂

∂z
+ 2y′z′D ∂

∂y

∂

∂z
= 0

Substituting the calculations of the connection in coordinates from
the previous section gives:

(x′′+x′y′y−y′z′) ∂
∂x

+(y′′+x′z′−yx′2) ∂
∂y

+(z′′+x′y′(−1+y2)−y′z′y)
∂

∂z
= 0

In the alternative method, we start at the same place, c′ = x′ ∂
∂x

+

y′ ∂
∂y

+ z′ ∂
∂z

and convert to U , V , and W to get c′ = x′U + y′V − (z′ −
yx′)W . Then, the geodesic equation Dc′c

′ = 0 expands to:

Dc′x
′U +Dc′y

′V +Dc′(z
′ − yx′)W = 0
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expanding again:

x′′U+x′Dc′U+y′′V +y′Dc′V +(z′′−y′x′−yx′′)W +(z′−yx′)Dc′W = 0

and finally

(x′′ − y′(z′ − x′y))U + (y′′ + x′(z′ − x′y))V + (z′′ − yx′ − yx′′)W = 0

If we substitute the expression for U , V and W into this, we see
we have exactly the same system of equations just written differently.
We’ll work with the second one as it is slightly easier. This means we’re
looking at the system of equations:

x′′ − y′(z′ − x′y) = 0

y′′ + x′(z′ − x′y) = 0

z′′ − yx′ − yx′′ = 0

The first thing to notice is that the expression z′ − x′y shows up in
several places. The third equation simply says that this expression is
constant. So, name this constant K. Our new system is:

x′′ −Ky′ = 0

y′′ +Kx′ = 0

z′ − x′y = K

Looking only at the first two equations, we see that the projection of
the geodesic to the x−y plane has its acceleration vector perpendicular
to its velocity vector and K times as long. This characterizes circular
motion around at an angular speed of K. When K = 0 we can see the
equations give a straight line in the x− y plane, which can be thought
of as a limiting case.

We can write this as :

x = A+B sin(Kt+ C)

y = D +B cos(Kt+ C)

Our equation for z′ then gives:

z′ = K +BDK cos(Kt+ C) +B2K cos2(Kt+ C)

which we can solve to get:

z = E +K(1 +
1

2
B2)t+

1

2
B2 sin(Kt+ C) cos(Kt+ C)
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This geodesic begins at (A+B sinC,D+B cosC,E+1
2
B2 sinC cosC).

Since Nil is homogeneous, it is enough to understand geodesics starting
at (0, 0, 0). In which case the equations simplify to:

x = B(sin(Kt+ C)− sinC)

y = B(cos(Kt+ C)− cosC)

z = (1 +
1

2
B2)Kt+

1

2
B2(sin(Kt+ C) cos(Kt+ C)− sinC cosC)

Notice that the speed of the geodesic at t = 0 is x′(0)2+y′(0)2+z′(0)2,
and that since z′ = K+x′y and y(0) = 0, we know that z′(0) = K. This
makes it easy to compute that the speed of the geodesic given by these
equations is just |K|

√
B2 + 1. Also note that at times t = 2πn

K
for n ∈ Z

all the trig terms drop out, and we have just c(t) = (0, 0, (1+ 1
2
B2)2πn).

In this way we can find infinitely many different geodesics between
(0, 0, 0) and any fixed (0, 0, z).

Thus Nil is an example where the exponential map T(0,0,0)Nil → Nil
is not a diffeomorphism, even thoughNil is diffeomorphic to R3. Which
is shortest? If we travel the geodesic until t = 2πn

K
then the length is

2π|n|
|K| times the speed of the geodesic, which is |K|

√
B2 + 1. Thus the

length of this geodesic between (0, 0, 0) and (0, 0, z) is 2π|n|
√
B2 + 1.

On the other hand, to end up at (0, 0, z) we must have 2πn(1+ 1
2
B2) =

z, so B2 = z
πn
− 2. This is only possible if z and n have the same

sign (assume it is positive, the other case is identical by symmetry),
and if n ≤ fracz2π. The ”obvious” geodesic c(t) = (0, 0, t) between
t = 0 and t = z has length |z|. The all implies that the above geodesics
are never minimizing to (0, 0, z) if |n| > 1, the obvious geodesic is
minimizing only until z = 2π after which the geodesics above with
n = 1 are minimizing. This gives that d((0, 0, 0), (0, 0, z)) is |z| if

|z| ≤ 2π, and d((0, 0, 0), (0, 0, z)) is 2
√
π
√
|z| − π if |z| ≥ 2π. Notice

that for z large this says the distance is about the square root of the
Euclidean distance. Can you find the distance from (0, 0, 0) to a general
point (x, y, z)? What does the cut locus look like in Nil?

Let’s look at the geodesics again, and try to understand them more
geometrically. We know that the projection to the x−y plane is moving
in a circle, at constant speed. The difficulty is z, which we obtained
from z′−x′y = K. If we write the as z′ = K+x′y we see that we can find
the change in z coordinate by integrating K + ydx along the curve (a
circlular arc) in the x−y plane. The K part is easy, it just contributes
a constant Kt to the integral. To integrate the form ydx along the
curve, we exploit Stokes’ theorem and the fact that d(ydx) = −dxdy.
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Suppose our circular arc runs from (0, 0) to (x, y), and suppose the
center of the circle is at some point (a, b). Consider the ”pie wedge”
consisting of the radial lines from (a, b) to (0, 0) and (x, y). The integral
of ydx over this wedge is the area enclosed. Since it is a circle of radius
B and the arc has angular speed K, this area is 1

2
B2Kt. The integral

along the ray from (a, b) to (0, 0) is a constant independent of t. The
integral along the line is more complicated to calculate. We can see
clearly from this, without calculating, that z will grow like (1+ 1

2
B2)Kt

plus a term which is periodic with a period of 2π
K

.

4. Curvature

We start by calculating the curvature tensor R. Recall that:

R(A,B,C,D) =< DADBC −DBDAC −D[A,B]C,D >

Using the calculation of the connection:

R(U, V, U, V ) =
3

4
R(U, V, U,W ) = 0

R(U, V, V,W ) = 0

R(U,W,U,W ) = −1

4
R(U,W, V,W ) = 0

R(V,W, V,W ) = −1

4
The values of R of all the rest of the combinations of U , V , and W

are determined by these using the symmetry properties of R.
Now, suppose that have a 2-plane, P , in T(0, 0, 0)Nil which is given

by an equation aU + bV + cW = 0. The vectors X = −bU + aV and
Y = −cU + aW give a basis for P unless a = 0. We can expand using
linearity:

R(X, Y, Y,X) = −bR(U, Y, Y,X)+aR(V, Y, Y,X) = −b(−cR(U,U, Y,X)+aR(U,W, Y,X))+. . .

= a2(a2R(V,W,W, V ) + b2R(U,W,W,U) + c2R(V, U, U, V )

+2bcR(U, V, U,W )− 2acR(U, V, V,W ) + 2abR(U,W, V,W ))

which evaluates to 1
4
a2(a2 + b2 − 3c2). The sectional curvature of P

is given by:

κ(P ) =
R(X, Y, Y,X)

||X||2||Y ||2− < X, Y >2
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We have ||X||2 = a2 + b2, ||Y ||2 = a2 + c2, and < X, Y >= bc, so the
denominator evaluates to a2(a2 + b2 + c2). Putting it all together gives:

κ(P ) =
a2 + b2 − 3c2

4(a2 + b2 + c2)
This formula extend to the case a = 0 by continuity. If we normalize

our choice of equation for P so that a2 + b2 + c2 = 1 (in other words
aU + bV + cW is a unit vector perpendicular to P ) then we have that
κ = 1

4
− c2. Let P0 be the plane a = b = 0 (the x− y plane). For any

P we have that c = cos θ where θ is the angle between P and P0. So
we get:

κ(P ) =
1

4
− cos2 θ

In particular we see κ(P ) = 0 if θ = π
3
, and κ is negative for planes

closer to P0 and positive for planes farther. The minimum curvature
occurs only for P0 and is −3

4
and the maximal curvature is 1

4
which

occurs for any plane meeting P0 at a right angle, or in other words,
and plane containing the z-axis.

A similar picture holds at al points of Nil by homogeneity. The
maximal curvatures always occur for planes containing the z-axis, but
the unique plane of minimal curvature is not always the x− y plane (it
is the UV plane, which changes in coordinates as (x, y, z) varies).


