
UNIT LENGTH COORDINATES

KEVIN WHYTE

Let M be R2 equipped with a metric in which the vector fields ∂
∂x

and ∂
∂y

are unit length vectors with an angle of θ:

|| ∂
∂x
|| = 1

|| ∂
∂y
|| = 1

and

<
∂

∂x
,
∂

∂y
>= cos θ

1. Preliminaries

This form of metric on R2 is much more general than the warped
product example, so we will not be able to get as precise an under-
standing. One useful point of view is the alternative coordinates:

u =
1√
2

(x+ y)

v =
1√
2

(x− y)

Notice that then:

|| ∂
∂u
||2 = 1 + cos θ

|| ∂
∂v
||2 = 1− cos θ

<
∂

∂u
,
∂

∂v
>= 0

We can also use this to make the comparison with the warped prod-
uct more concrete - both are given by orthogonal coordinates, with one
constraint on the lengths. However, in the warped product case we
also assume the metric is constant in one of the coordinate direction,
whereas here θ can vary arbitrarily.
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A good exercise in computation is to see if you can figure out what,
if any, restrictions this poses on the manifold. For instance, can you
find coordinates of this form for H2?

Another point worth noting is that this metric need not be complete:
for instance, is θ → 0 near infinity like 1

r
then the line x + y = 0 (and

all parallel lines) has finite length. Similarly, if θ approaches π fast
enough, the lines parallel to y = x are finite length. On the other
hand, if θ is bounded away from 0 and π, the metric is complete (the
u and v coordinates are particularly useful in making this clear). Can
you determine precisely what conditions make the manifold complete?

2. The Levi-Civita Connection

Since we have < ∂
∂x
, ∂
∂x
> and < ∂

∂y
, ∂
∂y
> are constant, we get:

< D ∂
∂x

∂

∂x
,
∂

∂x
>= 0

< D ∂
∂y

∂

∂x
,
∂

∂x
>= 0

< D ∂
∂x

∂

∂y
,
∂

∂y
>= 0

< D ∂
∂y

∂

∂y
,
∂

∂y
>= 0

The middle two equations give that D ∂
∂x

∂
∂y

= 0. Since < ∂
∂x
, ∂
∂y
>=

cos θ, we get:

< D ∂
∂x

∂

∂x
,
∂

∂y
> + <

∂

∂x
,D ∂

∂x

∂

∂y
>= −θx sin θ

< D ∂
∂y

∂

∂x
,
∂

∂y
> + <

∂

∂x
,D ∂

∂y

∂

∂y
>= −θy sin θ

In both cases we already know that one term is zero, so we get:

< D ∂
∂x

∂

∂x
,
∂

∂y
>= −θx sin θ

<
∂

∂x
,D ∂

∂y

∂

∂y
>= −θy sin θ

So, for D ∂
∂x

∂
∂x

we know the inner product with ∂
∂x

is zero, and with
∂
∂y

is −θx sin θ. This means we have:

D ∂
∂x

∂

∂x
= − θx

sin θ
(− cos θ

∂

∂x
+

∂

∂y
)

and similarly,
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D ∂
∂y

∂

∂y
= − θy

sin θ
(− cos θ

∂

∂y
+

∂

∂x
)

Alternatively, in u and v as coordinates:

D ∂
∂u

∂

∂u
=

1

2
D ∂

∂x
+ ∂

∂y
(
∂

∂x
+

∂

∂y
) =

1

2
(D ∂

∂x

∂

∂x
+D ∂

∂y

∂

∂y
)

= −(1− cos θ)(θx + θy)

sin θ
(
∂

∂x
+

∂

∂y
)

= −(1− cos θ)θu
sin θ

∂

∂u
similarly,

D ∂
∂v

∂

∂v
= −(1− cos θ)θu

sin θ

∂

∂u
and

D ∂
∂u

∂

∂v
=

(1 + cos θ)θv
sin θ

∂

∂v

3. Geodesics

We can work in either coordinate system. First, in x and y. Let
c(t) = (x(t), y(t)), and expand the equation D’̧c

′ = 0 as before to get:

x′′
∂

∂x
+ y′′

∂

∂y
+ 2x′y′D ∂

∂x

∂

∂y
+ x′

2
D ∂

∂x

∂

∂x
+ y′

2
D ∂

∂y

∂

∂y
= 0

substituting the calculations from the last section gives:

x′′ − x′2 cos θ

sin θ
θx − y′2

1

sin θ
θy = 0

and

y′′ − x′2 1

sin θ
θx − y′2

cos θ

sin θ
θy = 0

If u and v, if we write c(t) = (u(t), v(t)), we get :

u′′
∂

∂u
+ v′′

∂

∂v
+ 2u′v′D ∂

∂u

∂

∂v
+ u′

2
D ∂

∂u

∂

∂u
+ v′

2
D ∂

∂v

∂

∂v
= 0

which gives the system:

u′′ − (u′
2

+ v′
2
)
1− cos θ

sin θ
θu = 0
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and

v′′ + 2u′v′θv
1 + cos θ

sin θ
= 0

It is easy to check that these are the same equations under the co-
ordinate transforms. As we stated at the beginning, this metric is
quite general, and there is not much to be said about the solutions to
these equations without more information. Under further assumptions
things can be easier - for instance, if θ depends only on u then the
second equation says v is linear. If v = At + B the first equation is
then just u′′ − (u′2 + A2)1−cos θ

sin θ
θu = 0, which you should be able to

solve (see the discussion of metrics of constant curvature later for some
places where this might be relevant).

4. Curvature

Since the manifold is 2-dimensional, there is only one two plane at
each point, so curvature is described by a function κ giving the sectional
curvature of these planes.

κ =
< R( ∂

∂x
, ∂
∂y

) ∂
∂y
, ∂
∂x
>

|| ∂
∂x
||2|| ∂

∂y
||2− < ∂

∂x
, ∂
∂y
>2

The denominator is 1− cos2 θ = sin2 θ. For the numerator:

R(
∂

∂x
,
∂

∂y
)
∂

∂y
= D ∂

∂x
D ∂

∂y

∂

∂y
−D ∂

∂y
D ∂

∂x

∂

∂y
−D[ ∂

∂x
, ∂
∂y

]

∂

∂y
The last term is zero because x and y are coordinates, and the middle

term is zero because D ∂
∂x

∂
∂y

= 0, Using our calculation of D ∂
∂y

∂
∂y

, we

get:

R(
∂

∂x
,
∂

∂y
)
∂

∂y
= D ∂

∂x
(− θy

sin θ
(− cos θ

∂

∂y
+

∂

∂x
))

by the Leibnitz rule, this is:

= (− θxy

sin θ
+
θyθx cos θ

sin2 θ
)(− cos θ

∂

∂y
+

∂

∂x
)

− θy
sin θ

D ∂
∂x

(− cos θ
∂

∂y
+

∂

∂x
)

Again using the Leibnitz rule and our calculation of the connection:

= (− θxy
sin θ

+
θyθx cos θ

sin2 θ
)(− cos θ

∂

∂y
+

∂

∂x
)
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− θy
sin θ

(sin θθx
∂

∂y
− θx

sin θ
(− cos θ

∂

∂x
+

∂

∂y
)

= − θxy
sin θ

(
∂

∂x
− cos θ

∂

∂y
)

so < R( ∂
∂x
, ∂
∂y

) ∂
∂y
, ∂
∂x
>= −θxy sin θ, which gives:

κ = − θxy
sin θ

We could instead use u and v coordinates and our calculation of the
inner product there. We get the same answer, but expressed in u and
v coordinates. This looks like:

κ = −θuu − θvv
2 sin θ

Constant curvature
When does M have constant curvature? This means solving the

equation:

θxy = −κ sin θ

By reparametrizing, we may assume κ = 0, 1, or ,−1.
We look at the cases separately:
Case 1: κ = 0
This reduces to the equation θxy = 0. This says that ∂

∂x
θ is constant

in y and vice-versa, so that θ is the sum of a function of x and a function
of y:

θ(x, y) = θ1(x) + θ2(y)

When a metric of this form is complete (can you figure out when this
happens?) then we know M must be isometric to R2 - can you find the
isometry? Can you describe the what the incomplete examples look
like?
κ 6= 0
Here we get the equation θxy = ± sin θ. This equation becomes a bit

easier if we switch to u and v as coordinates, so that we have:

θuu − θvv = ±2 sin θ

The full solution here requires some more advanced knowledge of
differential equations, but some solutions are within easy reach. If we
look for a solution that is a function u only, we get a one variable
equation:
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θ′′ = ±2 sin θ

or

θ′′θ′ = ±2 sin θθ′

integrating,

θ′
2

= ±4 cos θ + A

for some constant A so that:

θ′ =
√
A± 4 cos θ

If we let FA(t) be the integral of 1√
A±4 cos θ

, the solutions to this

satisfy:

FA(θ) = u+B

for some constant B, so:

θ = FA
−1(u+B)

for some A and B. We cannot express FA in closed form in general,
but you should be able to calculate F4 using double angle formula.
(You’ll get expressions like tanh−1(csc t

2
)).

I’ll stop here, there are some natural questions to address:

• Are these metrics of constant curvature complete? Are they
defined everywhere? For warped products we saw that there
are everywhere defined metrics of constant negative curvature,
but not of constant positive curvature.
• More generally, can you find any complete metric of positive

curvature defined on all of R2? We proved there is no warped
product example. Here we’re looking for a function θ which
stays in the range (0, π) and defined on all of R2 for which
θxy < 0. That’s not quite enough, because we also would need
to make sure the metric is complete. Can you sort this all out?


