
WARPED PRODUCT METRICS ON R2

KEVIN WHYTE

Let M be R2 equipped with the metric :
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1. The Levi-Civita Connection

We did this calculation in class. To quickly recap, by metric com-
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from this, and using D ∂
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, we solve to get:
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Likewise:
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This determines the connection via linearity and the Leibnitz rule.

2. Geodesics

We will try to understand a geodesic c(t), starting at a point (x0, y0)
with initial tangent vector (u0, v0).

If c(t) = (x(t), y(t)) then c′(t) = x′(t) ∂
∂x

+ y′(t) ∂
∂y

. The geodesic

equation then becomes:
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which gives the system of equations:

x′′(t)− y′(t)2f(x(t))f ′(x(t)) = 0

y′′(t) + 2x′(t)y′(t)
f ′(x(t))

f(x(t))
= 0

If y′(t) 6= 0 we can divide the second equation by y′(t) to get:

0 =
y′′(t)

y′(t)
+ 2x′(t)

f ′(x(t))

f(x(t)
=

∂

∂t
log |y′(t)|+ log f(x(t))2

Which means that |y′(t)|f(x(t))2 is constant in t, except possibly for
intervals where y′(t) = 0. Evaluating at t = 0 gives that this constant

value is |v0|f(x0)
2. If v0 6= 0 we can conclude that y′(t) = v0

f(x0)2

f(x(t)

2
.

Since this expression is never zero (given that v0 6= 0) we know that out
geodesics either have y′(t) always positive, always negative, or always
zero. In the last case we can easily see that c(t) = (x0 + u0t, y0) is a
geodesic.
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We can substitute this expression into the other equation to get that:

x′′(t)− v2
0

f(x0)
4f ′(x(t))

f(x(t)3
= 0

after multiplying by 2x′(t), this becomes:

∂

∂t
(x′(t)

2
+ v2

0

f(x0)
4

f(x(t))2
) = 0

So x′(t)2 + v2
0

f(x0)4

f(x(t))2
is also constant. As before, substituting t = 0

determines this constant to be u2
0 + v2

0f(x0)
2. Note that this is just

the norm squared of (u0, v0), so that if we assume our geodesic to
be parametrized at unit speed, we have u2

0 + f(x0)
2v2

0 = 1 and the
equations of the geodesic reduce to:

y′(t) = v0
f(x0)

2

f(x(t)2

and

x′(t)2 + v2
0

f(x0)
4

f(x(t))2
= 1

If we solve the second equation, we get :

x′(t) = ±

√
1− v2

0

f(x0)4

f(x(t))2

Here the sign is determined by whether u0 is positive or negative.
The sign of x′(t) can only change when the expression inside the

radical is zero, meaning that f(x(t)) = |v0|f(x0). Thus we know that
x monotonically increases or decreases until it reaches such a value.
Assume that x is increasing and that x1 is the smallest value larger
than x0 where f(x) = |v0|f(x0). To understand the behavior of the
geodesic near x1, expand f in a power series around x1, giving f(x) =
|v0|f(x0) + (x − x1)f

′(x1) + . . .. Only the asymptotics of f around
x1 matter, so we only need the first non-zero term after the constant
term,so lett f(x) = |v0|f(x0) + C(x− x1)

k + . . . for some k ≥ 1.

The equation above then becomes x′(t) =
√

2C
f(x1)

(x1 − x)
k
2 + . . .,

where the omitted terms go to zero as x goes to x1 faster that (x−x1)
k
2 .

Standard differential equation facts say that for x near x1 the solutions
to our equation will be close to this equation with higher terms dropped.
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This truncated equation is easy to solve directly, although the form
depends on k.

• k = 1: The solutions are x = x1 − (
√

C
2f(x1)

t + K)2 where K

is an arbitrary constant. What this says is that the solution
increases until it reaches a maximum of x1 and then starts to
decrease.

• k = 2: The solutions are x = x1 − Ke
−

q
C

2f(x1)
t
. These so-

lution increase forever, approaching x1 asymptotically (at an
exponential rate).

• k > 2: The solutions are x = x1 − ( 1

( k
2
−1)

q
C

2f(x1)
t+K

)
k
2
−1. These

solution again increase forever, approaching x1 asymptotically.

Thus we know that our geodesic either hits x = x1 and turns around
(if f ′(x1) 6= 0) or is asymptotic to the line x = x1 when f ′(x1) = 0.
The case of x(t) decreasing is exactly the same. So, we have a complete
description of the behavior of a geodesic:

Summary Suppose c(t) is a geodesic starting at (x0, y0), parametrized
at unit speed, with tangent vector (u0, v0) at t = 0. Let x− and x+ be
the values below and above x0 where f(x) = |v0|f(x0). If f ′(x−) and
f ′(x+) are non-zero then c oscillates between these vertical lines, with
y monotonic (like a sideways sine curve). If one of f ′(x−) or f ′(x+)
is zero, then c is asymptotic to that line as t → ±∞ and is tangent
to the other once in the middle (like a sideways bell curve). If both
f ′(x−) and f ′(x+) are zero, then c is asymptotic to one as t→∞ and
the other as t→ −∞ (like the graph of tangent). Finally, if there is no
x− or x+ then c goes to infinity in the x coordinate (there are various
possibilities here depending on whether the other is a critical value,
etc.)

Suppose f has a proper local maxima at x0. There are some a <
x0 < b nearby with f(a) = f(b) and f ′(a) and f ′(b) both not zero.
The ”strip” between a and b contains an oscillating geodesic and the
vertical geodesic x = x0. Since these cross infinitely many times, there
are many pairs of points connected by more than one geodesic seg-
ment. Thus, under these assumptions geodesics are not determined
by their endpoints, and, in particular, the exponential map is not a
diffeomorphism. Can you determine the cut loci look like? Does some-
thing similar hold for a local maxima? If f is monotonic are geodesics
uniquely determined by their endpoints? Is the exponential map a dif-
feomorphism? Look at the discussion of negatively curved metrics for
some relevant discussion.
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3. Curvature

Using the results about the connection, and the expression

κ =
< R( ∂

∂x
, ∂

∂y
) ∂
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, ∂
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>

|| ∂
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||2|| ∂
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we can get the sectional curvature. Recall thatR(U, V )W = DUDVW−
DVDUW − D[U,V ]W . Since we are using the vector fields ∂

∂x
and ∂

∂y

which are come from coordinates, we have [ ∂
∂x
, ∂

∂y
] = 0 so that term

drops out, giving:
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D ∂
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∂
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∂
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expanding using the Leibnitz rule gives:

(f ′′(x)f(x) + f ′(x)2)
∂

∂x
+ f ′(x)f(x)D ∂

∂x

∂

∂x
− f ′(x)
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D ∂
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Again using the connection, this is:

−(f ′′(x)f(x) + f ′(x)2)
∂

∂x
+ 0 + f ′(x)2 ∂

∂x
= −f ′′(x)f(x)

∂

∂x
So, using the expression from the beginning of the section:

κ = −f
′′

f
We can work out some facts here:
If M has constant curvature K, we must have f ′′ = −Kf .
If K > 0 this means f is a linear combination of sin

√
Kx and

cos
√
Kx. In particular, it is impossible for such an f to be positive

on all of R2. So, we can only get constant positive curvature metrics
on ”strips” in R2, meaning pieces of the form [a.b]× R. The maximal

width of such a strip depends on linearly on K−
1
2 . ( These ”strips”

are the universal cover of the two sphere with two antipodal points
removed - see if you can prove this ).

If K = 0 this means f is linear, so f = Ax+B. If f > 0 everywhere
then A = 0 and f is constant. This means the metric is constant, so
M is just R2 with a standard Euclidean distance. When A 6= 0 we
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get a flat metric on a half plane. ( These are the universal covers of
a infinite cone with the cone point removed, the value of A depending
on the cone angle - again, you should be able to prove this).

Finally, if K < 0 we have f as a linear combination of e
√
−Kx and

e
√

Kx. This will be positive everwhere if both coefficients are non-
negative and one is positive. (All of these metrics must be isometric
to each other because they are all isometric to the hyperbolic plane by
our classification result for metrics of constant curvature. Can you find
an isometry? Can you give a description like the ones in the previous
parts for the metrics on parts of the plane when some of the coefficients
are negative?)

More generally, having positive curvature means f ′′ < 0. There are
no functions which are smooth, everywhere positive, and have f ′′ al-
ways negative (this is a good calculus problem). In contrast, negative
curvature means f ′′ > 0, and it is quite easy to find smooth functions
with f > 0 and f ′′ > 0 everywhere. In these cases we know (from the
Cartan-Hadamard theorem) that the exponential map is a diffeomor-
phism.

4. Some specific examples

The first example given in class was f =
√

1 + x2. This function has
only one critical point, at x = 0, and f is otherwise monotonic. Looking
at our results about geodesics, we can conclude that geodesics are of
three types: those that come in from infinity and ”turn around” before
before hitting x = 0 and go back out (sort of like sideways parabolas,
although the shape is more exponential than quadratic), those that
come in from infinity and are asymptotic to x = 0 (kind of like the
graph of y = 1/x, although is more than one shape possible, including
the line x = 0 itself), and those that extend infinitely in both directions
(there’s a variety of shapes here, including horizontal lines).

Can work out more precisely what the shapes are? Can you solve
the geodesic equations exactly?

The curvature in this example is not constant, but is easily computed
from the formula we obtained. It works out to be − 1

1+x2 . Thus this is
one example of a manifold of variable negative curvature. In this case
the manifold ”flattens out” as x→ ±∞.

Another natural example is f(x) = ex. From the previous section
we know that this has constant curvature −1, and so is another model
for the hyperbolic plane. The geodesics here are even simpler since f ′

is never zero. The discussion in the section on geodesics shows that
all geodesics are either horizontal lines, or they come in from +∞
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turn around and head back out. In that section we also saw that
y′f(x)2 is constant, which here means y′ is a multiple of e−2x, so as
x → ∞, y will have a limiting value - so the ends of these geodesics
are asymptotic to horizontal lines. With a bit more work one can solve
the equations completely in this case, which will give a relationship
between the spacing of the horizontal asymptotes and the x value where
the ”turn” happens.


