1. (Warm-up) Evaluate $\lim _{x \rightarrow 2^{-}} \frac{x+5}{x-2}$ and $\lim _{x \rightarrow 2^{+}} \frac{x+5}{x-2}$
2. (Warm-up) Find two positive numbers x and y that add up to 300 such that the product $x y$ is maximized.

Group 1 Problems

3. Evaluate $\lim _{x \rightarrow 4} \frac{x^{2}+x-20}{x^{2}-6 x+8}$
4. Evaluate $\lim _{x \rightarrow-\infty} \frac{3 x^{3}+4 x^{2}-20 x+1}{x^{3}+100 x-8}$. Be sure to show all work.
5. We wish to construct a box whose base length is 3 times its base width. The material used for the top and bottom costs $\$ 0.20 / \mathrm{cm}^{2}$ and the material used for the sides costs $\$ 0.05 / \mathrm{m}^{2}$. If the box must have a volume of $1000 \mathrm{~cm}^{3}$, what are the dimensions of the box that minimize the cost?

Group 2 Problems

6. Evaluate $\lim _{x \rightarrow-3} \frac{x^{2}+3 x-18}{x^{2}-2 x-3}$
7. Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}-4 x+1}{5 x^{3}+12 x^{2}-6 x+10}$. Be sure to show all work.
8. We wish to construct a cylinder by rolling a rectangular sheet of paper into a tube. If the sheet of paper needs to have a perimeter of 32 inches, what are the dimensions of the paper that give the largest possible volume of the cylinder?

Bonus

Limits where direct substitution gives $\frac{0}{0}$ and $\frac{\infty}{\infty}$ are said to be in indeterminate form. We've previously seen some methods for computing these limits in certain cases. In 180, you'll soon be covering a more general technique known as L'Hôpital's rule. L'Hôpital's rule says that

$$
\begin{aligned}
& \text { if } \frac{f(x)}{g(x)} \rightarrow \frac{0}{0} \text { or } \frac{f(x)}{g(x)} \rightarrow \frac{\infty}{\infty} \text { and } \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \text { exists, } \\
& \text { then } \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\end{aligned}
$$

In other words, for limits in indeterminate form, we can use $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$, if it exists, to find the limit $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ (note that L'Hôpital's rule does NOT work for limits not in indeterminate form).
9. Using L'Hôpital's rule, compute $\lim _{x \rightarrow-4} \frac{\sin (\pi x)}{x^{2}-16}$.

