1. (Review) Determine where the function $f(x)=\frac{x^{2}-9}{2 x^{2}-10 x+12}$ is discontinuous.
2. (Review) Use the Intermediate Value Theorem to show that $25-8 x^{2}-x^{3}=0$ has a solution in the interval $[-2,4]$.
3. (Warm-up) What is the definition of a Riemann sum for a function $f(x)$ on an interval $[a, b]$? What are Riemann sums useful for?
4. (Warm-up) Sketch the graph of $f(x)=x^{2}$ on the interval [0,5]. Draw the left endpoint approximation for the area under the graph with 5 subintervals, and calculate the left Riemann sum that corresponds to the rectangles. Is this an over or under estimate?
5. Consider the function $f(x)=x^{3}-8 x^{2}+19 x-12=(x-1)(x-3)(x-4)$ on the interval $[0,5]$ (the graph is shown below)

6. Consider the following graph of a function g :

(a) Sketch the midpoint approximation for $f(x)$ using 5 subintervals.
(b) Calculate the left, right, and midpoint Riemann sums for $f(x)$ on $[0,5]$ using 5 subintervals.

By examining the graph, compute the following:
(a) $\int_{0}^{2} g(x) d x$
(b) $\int_{2}^{6} g(x) d x$
(c) $\int_{0}^{6} g(x) d x$

