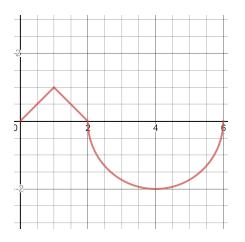

WORKSHEET 22

RIEMANN SUMS

28 January 2020


1. (**Review**) Determine where the function $f(x) = \frac{x^2 - 9}{2x^2 - 10x + 12}$ is discontinuous.

- 2. (Review) Use the Intermediate Value Theorem to show that $25 8x^2 x^3 = 0$ has a solution in the interval [-2, 4].
- 3. (Warm-up) What is the definition of a Riemann sum for a function f(x) on an interval [a, b]? What are Riemann sums useful for?
- 4. (Warm-up) Sketch the graph of $f(x) = x^2$ on the interval [0,5]. Draw the left endpoint approximation for the area under the graph with 5 subintervals, and calculate the left Riemann sum that corresponds to the rectangles. Is this an over or under estimate?
- 5. Consider the function $f(x) = x^3 8x^2 + 19x 12 = (x-1)(x-3)(x-4)$ on the interval [0,5] (the graph is shown below)

- (a) Sketch the midpoint approximation for f(x) using 5 subintervals.
 (b) Calculate the left wight and midmoint Pie.
- (b) Calculate the left, right, and midpoint Riemann sums for f(x) on [0, 5] using 5 subintervals.

6. Consider the following graph of a function g:

By examining the graph, compute the following:

(a)
$$\int_{0}^{2} g(x) dx$$

(b)
$$\int_{2}^{6} g(x) dx$$

(c)
$$\int_{0}^{6} g(x) dx$$