1. (Review) Find the linear approximation to $f(x)=e^{x}$ at $x=0$, and use this to approximate the value of $e^{0.1}$.
2. Consider the area under the graph of f between a fixed point a and a point x (which will vary). This area depends on the value of x, so we may say that the area $A(x)$ is a function of x. If we increase the value of x by a small amount $d x$, approximately how much will the area $A(x)$ change by?
3. What does this tell us about the value of $\frac{d}{d x} \int_{a}^{x} f(t) d t$?

This leads us to the Fundamental Theorem of Calculus, part 1:
Theorem. Suppose f is continuous on $[a, b]$. If x is in (a, b), then

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Note that this means that $\int_{a}^{x} f(t) d t$ is an antiderivative of $f(x)$.
4. Evaluate the following:
(a) $\frac{d}{d x} \int_{3}^{x} \frac{\sin \left(e^{t}\right)+3 t}{t \ln (\cos (t))} d t$
(b) $\frac{d}{d z} \int_{z}^{5} x e^{5 x} d x$
(c) $\frac{d}{d x} \int_{0}^{x^{2}} 3 t \sin (t) d t$
5. We want to be able to use the FTC to help us calculate integrals. Suppose f is a continuous function, and say we want to find $\int_{a}^{b} f(t) d t$. We will approach this in small steps:
(a) Let $A(x)=\int_{a}^{x} f(t) d t$. For some fixed real number b, what does $A(b)$ represent? (recall what we said the integral represents)
(b) Now let $F(x)$ be any antiderivative of $f(x)$. What can you say about how $F(x)$ and $A(x)$ are related? (hint: they are both antiderivatives of $f(x)$)
(c) By letting $x=a$, can we say something more specific about our answer to part (b)?
(d) Based on what we have found so far, what is a simple way for us to calculate $\int_{a}^{b} f(t) d t$? (hint: try plugging in $x=b$ into $A(x))$?
Our solution to problem 5 is sometimes referred to as the Evaluation Theorem or the fundamental Theorem of Calculus, part 2, and gives us a relatively easy way to evaluate integrals.

Theorem. Suppose f is continuous on $[a, b]$. If F is an antiderivative of f, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

6. Use the Fundamental Theorem of Calculus, part 2 to evaluate the following integrals:
(a) $\int_{0}^{1} x+1 d x$
(b) $\int_{0}^{\frac{3 \pi}{2}} \cos (t) d t$
(c) $\int_{2}^{4} 3 x^{2}+4 x+2 d x$
