Worksheet 25

THE FUNDAMENTAL THEOREM OF CALCULUS

 $23 \ {\rm April} \ 2020$

- 1. (**Review**) Find the linear approximation to $f(x) = e^x$ at x = 0, and use this to approximate the value of $e^{0.1}$.
- 2. Consider the area under the graph of f between a fixed point a and a point x (which will vary). This area depends on the value of x, so we may say that the area A(x) is a function of x. If we increase the value of x by a small amount dx, approximately how much will the area A(x) change by?

3. What does this tell us about the value of
$$\frac{d}{dx} \int_{a}^{x} f(t) dt$$
?

This leads us to the Fundamental Theorem of Calculus, part 1:

Theorem. Suppose f is continuous on [a, b]. If x is in (a, b), then

$$\frac{d}{dx}\int_{a}^{x}f(t)\,dt = f(x)$$

Note that this means that $\int_{a}^{x} f(t) dt$ is an antiderivative of f(x).

4. Evaluate the following:

(a)
$$\frac{d}{dx} \int_{3}^{x} \frac{\sin(e^{t}) + 3t}{t \ln(\cos(t))} dt$$

(b)
$$\frac{d}{dz} \int_{z}^{5} x e^{5x} dx$$

(c)
$$\frac{d}{dx} \int_{0}^{x^{2}} 3t \sin(t) dt$$

- 5. We want to be able to use the FTC to help us calculate integrals. Suppose f is a continuous function, and say we want to find $\int_{a}^{b} f(t) dt$. We will approach this in small steps:
 - (a) Let $A(x) = \int_{a}^{x} f(t) dt$. For some fixed real number b, what does A(b) represent? (recall what we said the integral represents)
 - (b) Now let F(x) be any antiderivative of f(x). What can you say about how F(x) and A(x) are related? (hint: they are both antiderivatives of f(x))
 - (c) By letting x = a, can we say something more specific about our answer to part (b)?
 - (d) Based on what we have found so far, what is a simple way for us to calculate $\int_{a}^{b} f(t) dt$? (hint: try plugging in x = b into A(x))?

Our solution to problem 5 is sometimes referred to as the **Evaluation Theorem** or the **fundamental Theorem of Calculus, part 2**, and gives us a relatively easy way to evaluate integrals.

Theorem. Suppose f is continuous on [a, b]. If F is an antiderivative of f, then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

6. Use the Fundamental Theorem of Calculus, part 2 to evaluate the following integrals:

(a)
$$\int_{0}^{1} x + 1 \, dx$$

(b) $\int_{0}^{\frac{3\pi}{2}} \cos(t) \, dt$
(c) $\int_{2}^{4} 3x^{2} + 4x + 2 \, dx$