1. (Review) We are given $45 \mathrm{~m}^{2}$ of cardboard and need to build a box with a square base and no top. What are the dimensions of the box that maximize its volume?

1. Summations

2. (Warm-up) Express the sum $2+5+8+11+14+17$ using sigma notation.

For the following problem, it might be helpful to recall the following formulas:

$$
\sum_{i=1}^{n} c=c \cdot n, \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

3. Evaluate the following sums:
(a) $\sum_{i=1}^{n} \frac{15}{n}$
(b) $\sum_{i=1}^{n} \frac{18 i}{n^{2}}$
(c) $\sum_{i=1}^{n} \frac{6 i^{2}}{n^{3}}$
(d) $\sum_{i=1}^{n} \frac{6 i}{n^{2}}$

2. Limit Definition of the Integral

Recall the limit definition of the integral:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where Δx is the length of each subinterval, and x_{i} are the evaluation points (we'll use right endpoints).
4. Use the limit definition of the integral to evaluate $\int_{1}^{4} 2 x+3 d x$. It may be helpful to break down the steps as follows:
(a) If we divide the interval $[1,4]$ into n subintervals of length Δx, what will be the values of Δx and x_{i} (the right endpoint of the i-th interval)?
(b) What is $f\left(x_{i}\right)$?
(c) For a fixed value of n, what is $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$? The sums you did in Q3 might come in handy.
(d) Evaluate $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$.
5. Use the limit definition of the integral to evaluate $\int_{0}^{1} 6 x^{2}-6 x d x$.

3. Sneak Peek

6. (a) Consider the area under the graph of f between a fixed point a and a point x (which will vary). This area depends on the value of x, so we may say that the area $A(x)$ is a function of x. If we increase the value of x by a small amount $d x$, approximately how much will the area $A(x)$ change by?
(b) What does this tell us about the value of $\frac{d}{d x} \int_{a}^{x} f(x) d x$?
