1. SEquences

Sequences aren't covered until Calc 2, but they can be helpful in providing another way of thinking about limits. A sequence is an ordered, unending collection of numbers, where the numbers are allowed to repeat. We will often label the elements of a sequence using variables with subscripts like $x_{1}, x_{2}, x_{3}, \ldots$.

Definition. Given a sequence x_{1}, x_{2}, \ldots, L is the limit of the sequence as n goes to infinity, written $L=\lim _{n \rightarrow \infty} x_{n}$, if the values of x_{n} become arbitrarily close to L as n gets large.
(1) Find a formula for the $n^{\text {th }}$ term of the following sequences. The first term given is for $n=1$.
(a) $1,4,9,16,25, \ldots$
(b) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$
(c) $2,4,8,16,32,64, \ldots$
(!) (d) $\frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{1}{4}, \frac{5}{32}, \frac{3}{32}, \frac{7}{128}$
(2) For each sequence, determine if the limit exists as n goes to infinity, and if it does, find the limit.
(a) $x_{n}=\frac{1}{n}$
(b) $y_{n}=\frac{n^{3}}{n^{4}+1}$
(c) $z_{n}=\frac{n^{3}-n}{n^{2}+2 n+1}$
(d) $3,3.1,3.14,3.141,3.1415, \ldots$
(e) $a_{n}=(-1)^{n}$
(f) $b_{n}=\frac{(-1)^{n}}{n}$
(g) $c_{n}=\cos (n \pi)$

2. Infinite Limits

(3) Fill in the blanks.
(a) A function can have at most \qquad horizontal asymptotes.
(b) A function can have at most \qquad vertical asymptotes.
(4) Find the following limits, if they exist:
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{5}-2 x}{x^{5}+3 x^{4}}$
(b) $\lim _{x \rightarrow-\infty} \frac{x^{4}+2 x^{2}-1}{x^{5}-2}$
(c) $\lim _{x \rightarrow \infty} \frac{x^{3}-2 x^{2}}{x^{2}+3 x-1}$
(!) (d) $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}$ (try plugging in large positive values for x)
(!) (e) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}}$ (try plugging in large negative values for x)
(5) Find all vertical asymptotes $x=a$ of the function

$$
f(x)=\frac{(x-2)(x+2)}{(x+3)(x-1)^{2}}
$$

For each value of a, find $\lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a^{-}} f(x)$, and $\lim _{x \rightarrow a} f(x)$.
(!) (6) Recall that a rational function is a ratio of two polynomial functions:

$$
f(x)=\frac{a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}}{b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}}
$$

Prove that if $m=n$, then $\lim _{x \rightarrow \pm \infty}=\frac{a_{m}}{b_{n}}$.

