(1) (Warm-up) Are the following true or false?
(a) If a line is tangent to a graph at a point, it only touches the graph at that one point.
(b) The exponential function e^{x} has two different points with the same tangent lines.
(c) For every function $f(x)$, after taking 'enough' derivatives of $f(x)$ we get zero. (As an example, the derivative of $2 x$ is 2 , and the derivative of 2 is 0)
(2) Evaluate the derivatives of the following functions.
(a) x^{5}
(e) $3 x^{2}+2 x$
(b) $3 x^{2}$
(f) $\left(x^{5}\right)\left(3 x^{2}\right)$
(c) e^{x}
(g) $\frac{x^{5}}{2 x+1}$
(d) x^{-1}
(h) $\left(x^{-1}\right)\left(e^{2} x\right)$
(3) Using the limit definition of the derivative, show that the derivative of the sum of two functions is the sum of the derivatives, i.e. show that for any differentiable $f, g,(f+g)^{\prime}=f^{\prime}+g^{\prime}$.
(4) (a) Using the product rule, prove that $\frac{d}{d x} x^{2}=2 x$.
(b) Using the product rule, prove that $\frac{d}{d x} x^{3}=3 x^{2}$.
(c) Using the product rule, prove that $\frac{d}{d x} x^{4}=4 x^{3}$.
(d) Do you see how this argument can generalize to prove the power rule?
(5) For this problem, we will need the idea of higher-order derivatives. Recall that $\frac{d}{d x} f(x)$ is the derivative of $f(x)$ with respect to x. The n-th derivative of $f(x)$ with respect to x, denoted $\frac{d^{n}}{d x^{n}} f(x)$, is the result of taking the derivative n times. For example,

$$
\frac{d^{2}}{d x^{2}} x^{3}=\frac{d}{d x}\left(\frac{d}{d x} x^{3}\right)=\frac{d}{d x} 3 x^{2}=6 x
$$

Evaluate the following derivatives.
(a) $\frac{d}{d x} x$
(b) $\frac{d^{2}}{d x^{2}} x^{2}$
(c) $\frac{d^{3}}{d x^{3}} x^{3}$
(d) $\frac{d^{4}}{d x^{4}} x^{4}$
(e) Can you guess the value of $\frac{d^{n}}{d x^{n}} x^{n}$, where n is a natural number?
(!) (6) Use the product rule to prove the quotient rule.
(!!) (7) Use the limit definition of the derivative to prove the product rule.

