(1) Give an example of a function that is
(a) not continuous and not differentiable at $x=0$
(b) continuous and not differentiable at $x=0$
(c) continuous and differentiable at $x=0$
(2) True or false? Explain your answer.
(a) If a function has a derivative, then the derivative is continuous.
(b) Two different functions can have the same derivative.
(c) A function can be equal to its own derivative.
(3) Using the definition of a derivative, find the derivatives of the following functions.
(a) $f(x)=2 x^{2}+1$
(b) $f(x)=\frac{1}{x}$
(c) $f(x)=x^{3}+x^{2}$
(d) $f(x)=e^{x}$ (you may use the fact that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$)
(4) Consider the unit circle (circle of radius 1) in the first quadrant, as below.

(a) In terms of $\sin (\theta)$ and $\cos (\theta)$, express the area of the triangle $A B C$.
(b) In terms of $\sin (\theta)$ and $\cos (\theta)$, express the area of the triangle $A B D$. (Hint: use the law of sines)
(c) The area of the sector (shaded area) $A B C$ is $\frac{1}{2} \theta$. It should also be easy to observe that (area of triangle $A B C) \leq($ area of sector $A B C) \leq($ area of triangle $A B D)$,
Given these two facts, prove that $1 \leq \frac{\theta}{\sin (\theta)} \leq \frac{1}{\cos (\theta)}$.
(d) Use the squeeze theorem to evaluate $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}$.
(e) Use the trig identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ to show $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta}=0$
(f) Use the trig identities $\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)$ and $\cos (a+b)=\cos (a) \cos (b)-$ $\sin (a) \sin (b)$ to find the derivatives of $\sin (x)$ and $\cos (x)$.
(!!) (5) Prove that if f is differentiable at $x=a$, then f is continuous at $x=a$.

