1. (Warm-up) Compute the following limits, or state that they do not exist.
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}$
(b) $\lim _{x \rightarrow 5^{+}} \frac{2 x-3}{x-5}$
(c) $\lim _{x \rightarrow \infty} \frac{x^{2}+x-3}{3 x^{3}+x^{2}-10 x+7}$
(d) $x^{4} \sin \left(\frac{1}{x^{4}}\right)$
2. (Warm-up) Find the derivatives of the following functions. Do not simplify.
(a) $f(x)=x^{2}+\sqrt{x}$
(c) $h(x)=e^{2 x} \sin (x)$
(b) $g(x)=3 x^{2}+2 x-1$
(d) $s(x)=\frac{\cos (x)}{x^{2}+2 x}$
3. Use the chain rule to calculate the derivatives of the following functions. Do not simplify!
(a) $\left(2 x^{2}-4 x+2\right)^{6}$
(b) $(\sin (x))^{3}$
(c) $\tan (\sqrt{x})$
(d) $e^{-x^{2}}$
(e) $\cos \left(x^{3}+x^{2}\right)$
(f) $\left(\left(x^{2}+3\right)^{3}+x^{2}-1\right)^{2}$
(g) $\left(\sin \left((2 x+1)^{3}\right)\right)^{4}$
4. (a) Use the fact that $e^{\ln (x)}=x$, along with the chain rule, to compute $\frac{d}{d x} \ln (x)$.
(b) Let a be a positive number. Compute $\frac{d}{d x} a^{x}$. (hint: rewrite a^{x} as $e^{a \ln (x)}$)
(!) (c) Compute $\frac{d}{d x} x^{x}$
(c) Recall that an inverse function for f is another function g, such that $f(g(x))=x$. Use this to show that

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

How could you use this to do part (a)?
5. Use the product and chain rules to derive the quotient rule. That is, given two arbitrary differentiable functions f and g, using only the chain and product rules, compute $\frac{d}{d x} \frac{f(x)}{g(x)}$.
6. Compute the derivative of $e^{e^{e^{e^{x}}}}$.

