1. (Review) Compute the derivative of $(\sin x)^{2 x}$. Do not simplify.
2. (Review) A 10 -foot ladder is leaning against a wall. It begins to slip down the wall, with the point touching the wall dropping at a rate of 1 foot $/ \mathrm{sec}$. At the moment that the top of the ladder is 8 feet above the ground, how quickly is the bottom of the ladder moving away from the wall?
3. (Warm-up) For a function $f(x)$, define critical points, local maximum/minimum, and global maximum/minimum.
4. (Warm-up) What is the process for finding the absolute maximum and minimum?
5. (Warm-up) In words, what does the Mean Value Theorem say?
6. Determine the absolute maximum and minimum for $f(x)=x^{3}$ on the interval $[-3,5]$.
7. Determine the absolute maximum and minimum for $f(x)=8 x^{3}+81 x-42 x-8$ on the interval $[-8,2]$.
8. Suppose that we know that $f(x)$ is continuous and differentiable on the interval $[-7,0]$, that $f(-7)=$ -3 , and that $f^{\prime}(x) \leq 2$ for all x in $[-7,0]$. What is the largest possible value for $f(0)$?
9. Recall that any quadratic function can be written in the form $f(x)=a x^{2}+b x+c$, where a, b, c are real number constants.
(a) What does it mean for two real numbers r and s to be roots (or zeros) of $f(x)$?
(b) If r and s are roots of $f(x)$, then we can factor to write $f(x)$ in the form $f(x)=k(x-r)(x-s)$, where k is a real number constant. Sketch an example of a quadratic function and label the roots r and s.
(c) Use the equation from part (b) to show that $f^{\prime}(r)=-f^{\prime}(s)$. What does this mean geometrically? (look at your graph)
(d) Show that $f(x)$ has a critical point halfway between r and s. Again, what does this mean geometrically? (hint: the halfway point between r and s is $\frac{r+s}{2}$)
(!) 10. Recall that Rolle's Theorem tells us that if f is continuous on a closed interval $[a, b]$ and differentiable on the open interval (a, b), with $f(a)=f(b)$, then there is some point $c \in(a, b)$ such that $f^{\prime}(c)=0$.

This statement looks eerily similar to the Mean Value Theorem. Use Rolle's Theorem to prove the Mean Value Theorem.

