Common ATEX commands for Math 294

1 Math mode

There are two primary math modes:
For inline math mode, put dollar signs $\$$ around the text: $\$ \mathrm{f}(\mathrm{x})=\mathrm{x}^{\wedge} 2 \$$ becomes $f(x)=x^{2}$.
For displayed math mode, put $\backslash[$ before and $\backslash]$ after the text: $\backslash[f(x)=x \wedge 2 \backslash]$ becomes

$$
f(x)=x^{2}
$$

The align environment is useful for writing multiple lines where certain symbols should line up between lines. To do this, put your text in between a \begin\{align*\} and a \end\{align*\} (the * makes it so LaTeX } doesn't add numbering to each line). A double backslash $\backslash \backslash$ will create start a new line, and an ampersand \& tells LaTeX where to align each line.

For example,

```
\begin{align*}
    f(x) &= (x+1)^2 \\
    &= x^2 + x + x + 1 \\
    &= x^2 + 2x + 1
\end{align*}
```

becomes

$$
\begin{aligned}
f(x) & =(x+1)^{2} \\
& =x^{2}+x+x+1 \\
& =x^{2}+2 x+1
\end{aligned}
$$

2 Text formatting

To bold text, place the text in between the curly braces of \backslash textbf $\}$: \textbf $\{$ bold $\}$ becomes bold.
To italicize text, place the text in between the curly braces of \textit\{\}: \textit\{italics\} becomes italics.

2.1 Formatting in math mode

Formatting in math mode works a little differently, and there are some things that can only be done in math mode.

All spaces and line breaks are ignored in math mode: $\$ \mathrm{f}(\mathrm{x})=\mathrm{x}^{\wedge} 2 \$$ and $\$ \mathrm{f}(\mathrm{x})=\mathrm{x} \quad \mathrm{x} 2 \$$ give the same output: $f(x)=x^{2}$ and $f(x)=x^{2}$ look the same;
$\backslash\left[\mathrm{f}(\mathrm{x})=\mathrm{x}^{\wedge} 2 \backslash\right]$
and
\
$f(x)=$
x ${ }^{\wedge}$
\]

give the same output:

$$
f(x)=x^{2}
$$

and

$$
f(x)=x^{2}
$$

look the same.

To do superscripts, use a caret ${ }^{\wedge}$, while to do subscripts, use and underscore _: $\$ \mathrm{x}^{\wedge} 2 \$$ becomes $x^{2}, \$ \mathrm{x} _1 \$$ becomes x_{1}.

Note that superscripts and subscripts will only work for one character; if you want to have a longer superscript or subscript, enclose the entire superscript/subscript in curly braces \{\}: $\$ \mathrm{x}^{\wedge} 2 \mathrm{n}+1 \$$ becomes $x^{2} n+1$ (not good!), while $\$ \mathrm{x}^{\wedge}\{2 \mathrm{n}+1\} \$$ becomes $x^{2 n+1}$ (good!).

3 Commonly used symbols

All symbols must be done in math mode.

- Not equals: \backslash neq becomes \neq
- Less than or equals to and greater than or equals to: \leq becomes \leq, \geq becomes \geq
- Times: \times becomes \times
- Slashes: use \not before any math mode command to put a slash through it. For example, \not \backslash mid becomes $\not \subset$
- "Math blackboard": \mathbb\{letter\} gives a version of the letter with an extra line, commonly used for sets like natural numbers and integers. For example,

1. \backslash mathbb $\{\mathrm{N}\}$ becomes \mathbb{N} (natural numbers)
2. \mathbb $\{\mathrm{Z}\}$ becomes \mathbb{Z} (integers)
3. \mathbb\{Q\} becomes \mathbb{Q} (rational numbers)
4. \mathbb\{R\} becomes \mathbb{R} (real numbers)

- "Math calligraphic": \mathcal\{letter\} gives a calligraphic version of the letter. For example, \backslash mathcal $\{\mathrm{A}\}$ gives \mathcal{A}.

4 Logical symbols

All logical symbols must be done in math mode.

- And: \land becomes \wedge
- Or: \lor becomes \vee
- Not: \neg becomes \neg
- Implies: \Rightarrow becomes \Rightarrow, \implies becomes \Longrightarrow
- If and only if: \Leftrightarrow becomes \Leftrightarrow, \iff becomes \Longleftrightarrow
- For all: \forall becomes \forall
- There exists: \exists becomes \exists

5 Symbols related to sets

All set-related symbols must be done in math mode.

- Curly braces: $\backslash\{$ and $\backslash\}$ become $\{$ and $\}$
- Ellipses: ··· becomes ...
- Vertical bars: \mid becomes |
- Element of: \in becomes \in, \notin becomes \notin
- Subset/superset: \subseteq becomes \subseteq, \subset becomes \subset, \subsetneq becomes \subsetneq \backslash supseteq becomes \supseteq, \supset becomes \supset, \supsetneq becomes \supsetneq
\not \backslash subseteq becomes \nsubseteq, and similarly for all variants of subset/superset
- Empty set: \varnothing becomes \varnothing. You can also use \emptyset to get \emptyset, but I prefer \varnothing.
- Intersection: \cap becomes \cap
- Union: \cup becomes \cup
- Relative complement: \setminus becomes \}
- Power set: \mathcal $\{\mathrm{P}\}(\mathrm{X})$ becomes $\mathcal{P}(X)$
- Indexed intersections and unions: \bigcap_\{i \in I\} X_i becomes $\bigcap_{i \in I} X_{i}, \backslash$ bigcup_\{i \in I\} X_i becomes $\bigcup_{i \in I} X_{i}$.
Indexed intersections and unions look better in displayed mode, since it will move the indexing to under the symbol. The same commands as above in displayed mode show up as:

$$
\bigcap_{i \in I} X_{i} \quad \text { and } \quad \bigcup_{i \in I} X_{i}
$$

- Cartesian product: use \times for Cartesian products: $A \times B$.
- Indexed Cartesian products: \prod_\{i \in I\} X_i becomes $\prod_{i \in I} X_{i}$. Like indexed intersections and unions, indexed Cartesian products look better in displayed math mode:

$$
\prod_{i \in I} X_{i}
$$

6 Lists

To start a numbered list, place the text between \begin\{enumerate\} and \end\{enumerate\}, and use - } to start a new item in the list:


```
\begin{enumerate}
    \item this is the first item
    this is some text between item 1 and item 2
    \item this is the next item
\end{enumerate}
```

becomes

1. this is the first item
this is some text between item 1 and item 2
2. this is the next item

You can also nest numbered lists automatically:

```
\begin{enumerate}
    \item \begin{enumerate}
            \item this is item 1.(a)
            \item this is item 1.(b)
        \end{enumerate}
        \item this is item 2
\end{enumerate}
```

becomes

1. (a) this is item 1.(a)
(b) this is item 1.(b)
2. this is item 2
