Math 294 Week 12 - Infinity

Recall)
Defin A function $f: x \rightarrow y$ is

- injective if for all $x_{1}, x_{2} \in X$, $x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$

- Surjective if for all $y \in Y$, there is $x \in X$ such that $f(x)=y$

- bijective it it is both injective and surjective.

Suppose X and Y are both finite, and suppose re had a function $f: X \rightarrow Y$.

What can we say about the sizes of X and 4 if:

- f is injective?
- f is susjective?
- \mathcal{L} is bijective?

For any natural number $n \in \mid N$, let $[n]$ denote the set $\{1,2, \ldots, n\}$.
Def h set X is finite if there is some $n \in I N$ and a bijection $f:[n] \rightarrow \lambda$.
X is infinite if n o such n exists.

Defin Given sets X and Y, he say

- X has cardinality less than on equal to Y, denoted $|X| \leq|Y|$, it there is an injection $f: X \rightarrow Y$.
- X has cardinality greater than or equal to $Y \quad(|X| \geqslant|y|)$ it there is a surjection $g: x \rightarrow y$.
- X has cardinality equal to Y
if there is a bijection $h: x \rightarrow Y$.
- $|x|<|y|$ mans $|x| \leqslant|y|$ bot $|x| \neq|Y|$
and similarly for $|X|>|Y|$.

Define An infinite set X is countably infinite if there is a bijection $f: \mid N \rightarrow X \quad($ ie $|X|=|\mathbb{N}|)$ X is uncountably infinite if there is no such f.

Think of f as a ray to list out the elements of X.
eg \mathbb{Z} is countably infinite.

Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ by

$$
f(n)=\left\{\begin{array}{lll}
\frac{n}{2} & \text { it } n \text { is even } \\
-\frac{n+1}{2} & \text { if } n \text { is odd }
\end{array}\right.
$$

Theorem $||N|<|\mathbb{R}|$ (the cardinality of IN is strictly less than the cardinality of (\mathbb{R}). pt today's worksheet!

