Math 294 Week 13 - Combinatorics

Q Given a grep of n candidates, how many ways are there to choose a committee of k people?

Defoe ($\binom{n}{k}$ (read as "n choose k ") denotes the number of ways to pick k elements from a ged of n elements.

2 How many ways are there to choose a committer of 17 out of a group of 100 people with on chairperson?

Proposition $\binom{n}{k}=\binom{n}{n-k}$
pf Left hard side counts

Right hard side counts

Proposition $\sum_{i=0}^{n}\binom{n}{i}=2^{n}$
pt The lest hand side can be wither as
$\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}$
This cants
the right hand side counts

Strategy (Proof by dabble counting)
To prove that two numbers are equal, it's enough to show that both numbers count the same finite set.

Strategy (Multiplication Principle)
Let X be a finite set.
Suppose that we have a step-by-step procedure for specifying the elements of X suck that:

- each elemat is specified by a unique sequence of choices
- the choices avaikble at each step depend only on previous steps
- The number of choice available at each step doesnit depend on the chives made

The if there are n steps and m_{k} chive aunilable at the k-th step,

$$
|x|=\prod_{k=1}^{n} m_{k}=m_{1} \cdot m_{2} \cdots m_{k}
$$

Strategy (Addition principle)
A (finite) partition of a set X is a collection of subsets $u_{1}, \ldots, u_{n} \leq X$ such that:

- conch U_{i} is nonempty
- the U_{i} 's are pairwise disjoint - that is,

$$
\begin{aligned}
& u_{i} \cap u_{j}=\phi \quad \text { for } i \neq j \\
& u_{1} \cup \cdots \cup u_{n}=X .
\end{aligned}
$$

If u_{1}, \ldots, u_{n} is a partition of X, then

$$
|x|=\left|u,\left|+\cdots+\left|u_{n}\right|\right.\right.
$$

