Quantifiers + Sets
Recall that last week, we introduced propositional loge as a way to formally express mathematical statements.
However, propositional logic isn't quite expressive enough for ow needs - this is where quantifiers come in.

A brief interlude on sets
Sets are one of the most important ideas in mathematics. informally, a set is a collection of objects. You've actually already seen countless examples or sets!
eg. the set of natural numbers (dented by IN)

- the set of rational numbers (devoted by Q)
- the set of real numbers (denoted by \mathbb{R})
- the set of fruits
- the set of US presidents
- the set of things in Kevin's fridge

Well usually use capital letters to denote sets.
It's important to say it an object belongs to a particular set.
eg. $\frac{1}{2}$ belongs to \mathbb{Q}

- $\frac{1}{2}$ is an leman of \mathbb{Q}
- $\frac{1}{2} \in \mathbb{Q}$
- $\frac{1}{2}$ is not an element of IN
$\frac{1}{2} \$ 1 N$

Qualifiers
In math, we often led with variables: eq " x is divisible by 2 "
Q vantitiez allow us to say something about what sort of valves might satisfy a statemat

Universal Quantification ("for all", V)
Let $P(x)$ be some statemat involving the variable x, and let X be some set.
$\forall x+X, P(x)$ means "for all x in $X, P(x)$ is true"

- eq " $\forall x \in / W, x$ is divisble by 2^{n} is false
- to prove a statement of the form " $\forall x \in X, P(x)$ ", assure that X is an elemat of X (but nothing else about x), then prove $P(x)$.
- eg Let E be the set of even integers. show that $\forall x \in E, x^{2} \in E$.
proof Assume that $x \in E$ (so x is even).
This means that $X=2 n$ for some integer n.
Then $x^{2}=(2 n)^{2}=4 n^{2}=2\left(2 n^{2}\right)$
Let $m=2 n^{2}$ (which is an integer).
Since $x^{2}=2 m$ where m is an integer, x^{2} is even, and thus $x \in E$
- If in a proof you already know that " $\forall x \in X, P(x)$ "
is trove, then if you know that a $f X$, then
yo can concuss that $P(a)$ is tree.

Existential Quantification ("there exists", J)
Let $P(x)$ be some statemat involving the variable x, and let X be some set
$\exists x+X, P(x)$ means "there is X in X for which $P(x)$ is tree"

- eq " $\exists x \in 6 / W, x$ is divisible by 2^{n} is tue
- to prove a statement of the form " $\exists x \in X, P(x)^{\text {" }}$, give an explinit example of an ekment a\&X for which $P(a)$ is true.
- eg show that $\exists n \in I N, n$ is a perfect square and n is are more than a perfect cube. prowl Let $n=9$.

Then $n=3^{2}$ so n is a perfect square
Also, $n=2^{3}+1$ so n is one more than a perfect cube.

- If in a proof you already know that " $\exists x \in X, P(x)$ " is true, then you cans select ore dement ac X for which $P(a)$ is true.

We can combine multiple quantifiers in a single statement - the order of the quantifies can make a big difference in meaning!

- Led $p(x, y)$ men "dear x can be unlocked by ley y ".

$$
\begin{array}{rl}
& \forall x \\
\exists y & p(x, y) \\
\text { vs } & \exists y \\
\forall x & p(x, y)
\end{array}
$$

