Math 294 Week 4 - Sets

Naive definition of a set: a sect is any collection of objects (possibly including other sets!)

Warning: this can carse problems!

Hew definition for a set:
Defin A set is a collection of objects (ar elements) from a specified universal set, We use U to denote the universal set.

Defin $x \in X$ mans " x is an element of X ". $x \notin X$ mems $\neg(x \in X)$, ie " x is not an element of X ".
eg $\frac{1}{2} \in \mathbb{Q}$ (rational numbers)

$$
\frac{1}{2} \notin \mathbb{Z} \quad \text { (integer) }
$$

Specking a set
Lists

- $\{1,2,3\}$
- $\{5, x$, apple $\}$
- $\{1,2,\{1,2\}\}$

Implied lists

$$
\begin{aligned}
& \cdot\{1,2,3, \ldots, 20\} \\
& \cdot\{1,2,3, \ldots\} \\
& \cdot\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\}
\end{aligned}
$$

Set-biiler notation

Define Let X be a set, and $P(x)$ be som property, Define $\{x \in X \mid P(x)\}$
as the set of elements x from X such that $P(x)$ is true.
eg. $\{n \in|N| n$ is a prime number $\}$

$$
\begin{aligned}
& \cdot\{n \in \mathbb{Z} \mid \exists m \in \mathbb{Z}, n=2 m\}=\text { set ot even int eger } \\
&=\{\ldots,-4,-2,0,2,4, \ldots\} \\
& \cdot\left\{n^{2}|n \in| N\right\}=\left\{m|\exists n \in| N, m=n^{2}\right\}
\end{aligned}
$$

Proper strategy
To prove a sodatemat of the form " $a \in\{x \in X \mid P(x)\}$ ", we need to prove that $a \in X$ and that $P(a)$ is true.

If we know that $a \in\{x \in X \mid P(x)\}$, he may assume $a \in X$ and $P(a)$ is true.

The empty set
Define The empty set is the oed that has no elements.
He denote the empty set with ϕ.
Wore We should be careful about using the word "the", since it implies that there is only one empty set. This is true, but it's not part of the definition.

Subsets

Defir Let X and Y be sets. X is a subset of Y, denoted $X \subseteq Y$, it

$$
\forall a,(a \in X \Rightarrow a \in Y) \quad[\forall a \in X, a \in Y]
$$

$X \notin Y$ means X is not a subset or Y.
$X+Y$ meas X is a subbed of Y, but is not equal to Y.

Prot strategy
To prove a statement of the form $X \subseteq Y$, take an arbitrary element $a \in X$ and show it is in Y.

If we know $X \subseteq Y$ and a $X X$, then we can conclude $a \in Y$.
eq let X be a set. Then $X \subseteq X$. proof: we wast to prove $\forall a \in X, a \in X$.

Let $a \in X$. Then $a \in X$ by assumption.
$e_{2} \quad \mathbb{N} \leq \mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$
natural inters rational neal numbers numbers numbers embers
numbers nom

Set equality
How do we say when two sets are equal? A set is given by its elements, so we should say that two sets are equal when they contain exactly the same elemats.

Axiom/Defin (Set extasionality)
Let X and Y be sets.
than $X=4$ it and only if

$$
\forall a,(a \in X \Leftrightarrow a \in Y)
$$

Equivalent 1 ty,

$$
X \subseteq Y \quad \text { and } \quad Y \subseteq X
$$

Prot strategy (Proof by double containment)
To prove $X=Y$,

- first prove $X \subseteq Y$

$$
\text { (let ask, prove } a \in Y \text {) }
$$

- then prove $X \geq Y$
(let $a \in Y$, prove $a \in X$)

Set Operations

Intersection
Defin The intersection of X and Y, denoted $X \cap Y$, is defined by

$$
X \wedge y=\{a \mid a \in X \wedge a+Y\}
$$

Proof strategy
To prove $a \in X \cap Y$, re prove that $a \in X$ and that a $E Y$.
It re know $a \in X \cap Y$, then we know both $a \in X$ and $a \in Y$.

Union
Define the union of X and Y, denoted $X \cup Y$, is defined by

$$
X \cup Y=\{a \mid a \in X \vee a \in Y\}
$$

Proof strategy
To prove $a \in X \cup Y$, we prove one of $a \in X$ on
$a \in Y$,
If he know $a \in X \cup Y$, we can split into fro cares: one when e $a \in X$ and on when e $a \in Y$.

Complemat
Defin the relative complement of Y in X, denoted $X \backslash Y$, is defined by

$$
X \backslash \varphi=\{a \mid a \in X \wedge a \notin Y\}
$$

Proof strategy
To prove $a \in X \backslash Y$, he prove $a \in X$ and $a \notin Y$, If he know $a \in X \backslash Y$, we know both $a \in X$ $\operatorname{ang} a \notin Y$.

Detin Let X be a set whose elements come from some univeza set U.
The complemat of X, denoted X^{c} or X, is defined by

$$
x^{c}=u>x
$$

