Math 294 Heck 5 - Sets I

Last reck: introduces sets.
Recall
Subschs:
$$A \in B$$
 means "Va, $a \in A = a \in B$ "
Empty eat: ϕ denotes the set with no elements.
The Power Set
Definic Let X be a set. The power set of X.
dans ber $P(X)$, is the set of all subsches of X.
Symbolically, $P(X) = \{Y \mid Y \in X\}$.
Symbolically, $P(X) = \{Y \mid Y \in X\}$.
So Let $X = \{1, 2\}$.
X has four subsches:
 ϕ , $\{1\}$, $\{2\}$, and $\{1,2\}$.
So $P(X) = \{\phi, \{1\}, \{2\}, \{1,2\}\}$.
So $P(X) = \{\phi, \{1\}, \{2\}, \{1,2\}\}$.
So $Let X$ be any set.
Then $\phi \in P(X)$ and $X \in P(X)$.
To do this, we show $\phi \in X$.
Let a be some cleart. In each to show $a \notin \Rightarrow a \in X$.
But $a \in \phi$ is folse, so $a \in \phi \Rightarrow a \in X$ is the?
Thus $\phi \in X$, and we concluse that $\phi \in P(X)$.

Next, we show X & X. We already and this last neck, but for review: let a eX. Then a EX by assumption, so X EX. Le canclude that X & P(X). Key iden For sets 4 and X, USX O YEP(X) Varning! DCD is true =) \$ 6 \$ (\$) is true \$ E \$ is false e_{Σ} $\chi \in Y \Rightarrow \mathcal{P}(\chi) \subseteq \mathcal{P}(Y).$ pt besome X = Y. Let he P(X). The UEX. Since X = Y, it follows that U = Y. (exercise: write out a full proof of this step!) So UEPLY)_ Thus we canduly that $\mathcal{P}(X) \leq \mathcal{P}(Y)$.

Indexed families of sets

Det Let I be some set (which we will call the index set) An indexed family of sets is a specification of a set X; for each it I. He write { X: 1:6I} for the indexed family of sets.

A common index set is IN (natural numbers): es For each nG IN, let $\chi_{n} = 10, ..., n5$ 50 X = 204, $\chi_1 = \chi_0, 1$ $\chi_{2} = 10, 1, 24$

Defin The indexed intersection of an indexed family {X: lieI's defined by $\bigwedge_{i \in \mathbb{Z}} X_i = \langle \alpha | \forall_{i \in \mathbb{Z}}, \alpha \in X_i \rangle$ The indexed Union of an indexed family {X: liGIS is defined by $V_{i} = \langle \alpha | \exists i \in L, \alpha \in \lambda; \rangle$

Exp. Recell that it a, b & R, the
$$Ee, b]$$
 is the
Introd between a and b
 $Ea, b] = \langle x \in |R| | a \in x \leq b \}$
He can also replace E'' with C'' to drage $e' + b e' < 1$
 $(a, b) = \langle x \in |R| | a < x \leq b \}$
 $Ea, b) = \langle x \in |R| | a < x \leq b \}$
 $(a, b) = \langle x \in |R| | a < x \leq b \}$
Let $I = \langle n \in |N| | n \geq 1 \} = \langle 1, 2, 3, ... \rangle$
For $n \in I$, let $\chi_n = Eo, 1 + h$
River that $(A = \chi_n = Eo, 1 + h)$
 $Pie He proceent by double containmate
 $First, show = A = Eo, 1 + h$
 $he searce that = a \in Eo, 1 + h$
 $he searce that = a \in Eo, 1 + h$
 $he proceent by double containmate
 $First, show = A \geq 0.$
Assume for the sake of costradition that $a > 1.$
 $The a = 1 > 0.$
Let N be some natural number legs that $\frac{1}{a-1}$.
 $B = \frac{1}{N} \leq a < 1 + \frac{1}{N}$, and hence $a \notin Eo, 1 + \frac{1}{N}$.
But he assumed that $a \in Eo, 1 + \frac{1}{N}$ for all $n > 1$,
 $a = a + 1 > 0.$$$

So a <1 and therefore a E EO, 1]

Next, show [0,1] C (X) Let 46 CO, 17. That is, oeael. To prove a G (Xa, we need to show that 6 6 EO, 1+ t,) for all n 2, 1. 5. Fix n 2/1. Since $a \in | < | + \frac{1}{n}$, $a < | + \frac{1}{n}$. Ales we know a 20. This of a < (+ h, and hence a & Lo, 1+ h)-10