Math 294 Week 5 - Sets II

Last reek: introduce r sets.
Recall
Subsets: $A \subseteq B$ means " $\forall a, a \in A \Rightarrow a \in B$ " Empty set $=\phi$ denotes the set with n elements.

The Popes Set
Defoe Let X be a set. The power set of X denoted $P(X)$, is the set of all subsets of X. Symbolically, $P(x)=\{y \mid y \subseteq X\}$.
eg Let $X=\{1,2\}$.
X has fou subsets:
$\phi,\{1\},\{2\}$, and $\{1,2\}$.
So $P(x)=\{\phi,\{1\},\{2\},\{1,2\}\}$.
es Let X be any set.
Then $\phi \in P(X)$ and $X \in P(X)$.
pf First, u show $\phi \in P(X)$.
To do this, we show $\phi \subseteq X$.
Let a be sone clemat. He rant to show $a \in \phi \Rightarrow a \in X$. Bur $a \in \phi$ is false, so $a \in \phi \Rightarrow a \in X$ is true?
Thus $\phi \subseteq X$, and re cancluse that $\phi \in P(X)$.

Next, we show $X \subseteq X$.
We already did this last meek, but ton review:
let $a \in X$. Then $a \in X$ by assumption, so $X \leq X$. te conclude that $X \in P^{P}(X)$.

Key idea
For sets U and X,

$$
u \subseteq x \quad \Leftrightarrow \quad u \in P(x)
$$

Wanniv! $\phi \subseteq \Phi$ is true

$$
\begin{aligned}
& \Rightarrow \phi \in P(\phi) \text { is true } \\
& \phi \in \phi \text { is false }
\end{aligned}
$$

es $x \leq y \Rightarrow P(x) \subseteq P(y)$.
pf Assume $X \subseteq Y$.
Let $u \in P(x)$.
The $u \subseteq X$.
Since $x \leq y$, it follows that $u \subseteq y$.
(exercise: write out a full proof of this step!)
So $u \in P(y)$.
Thus re conclave that $P(x) \subseteq P(y)$.

Indexed families of sets

Defin Let I be some set (which we will call the index set). An in dexed family of sets is a specification of a set X_{i} for each $i t I$.
We write $\left\{X_{i} \mid i \in I\right\}$ for the indexed family of sets.

A common index set is IN (natural numbers):
es For each $n \in W$, let

$$
x_{n}=\{0, \ldots, n\}
$$

So

$$
\begin{aligned}
& x_{0}=\{0\}, \\
& x_{1}=\{0,1\} \\
& x_{2}=\{0,1,2\}
\end{aligned}
$$

Defin The indexed intersection of an indexed family $\left\{X_{i} \mid i \in I\right\}$ is defined by

$$
\bigcap_{i \in L} X_{i}=\left\{a \mid \forall i \in I, \quad a \in X_{i}\right\}
$$

The indexed union of an indexed family $\left\{X_{i} \mid i \in I\right\}$ is defined by

$$
\bigcup_{i \in I} X_{i}=\left\{a \mid \exists i \in I, a \in X_{i}\right\}
$$

eg Recall that it $a, b \in \mathbb{R}$, then $[a, b]$ is the intioal between a and b

$$
[a, b]=\{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}
$$

We can also replace " $[$ " with " $($ " to change " \leqslant "to " $<$ ":

$$
\left.\begin{array}{l}
(a, b)=\{x \in \mathbb{R} \mid a<x<b \\
{[a, b)=\{x \in \mathbb{R} \mid a \leqslant x<b} \\
(a, b]=\{x \in \mathbb{R} \mid a<x \leqslant b
\end{array}\right\}
$$

Let $I=\{n \in|N| n \geqslant 1\}=\{1,2,3, \ldots\}$
For $n \in I$, let $X_{n}=\left[0,1+\frac{1}{n}\right)$
Prove that $\bigcap_{n \geqslant 1} X_{n}=[0,1]$
pt we proceed by dabble containmad.
First, show $\bigcap_{n \geqslant 1} X_{n} \leq[0,1]$
Let $a \in \bigcap_{n \geqslant 1} X_{n}$.
This means that $a \in\left[0,1+\frac{1}{n}\right)$ for all $n \geqslant 1$.
In particular, $a \geqslant 0$.
Assume for the sake of contradiction that $a>1$.
Then $a-1>0$.
Let N be some ratwol number large than $\frac{1}{a-1}$.

$$
\Rightarrow \frac{1}{N} \leq a-1
$$

Thus $a \geqslant 1+\frac{1}{N}$, and hence $a \notin\left[0,1+\frac{1}{N}\right)$.
But he assumed that $a \in\left[0,1+\frac{1}{n}\right)$ for all $n \geqslant 1$, a contradiction!

So $a \leq 1$ and therefore $a \in[0,1]$.

Next, show $[0,1] \subseteq \bigcap_{n>1} X_{n}$
Let $a \in[0,1]$.
That is, $\sigma \leqslant a \leqslant 1$.
To prove $a \in \bigcap_{n \geqslant 1} X_{n}$, we need to show that $a \in\left[0,1+\frac{1}{n}\right)$ for all $n \geqslant 1$.
So fix $n \geqslant 1$.
Since $a \leq 1<1+\frac{1}{n}, \quad a<1+\frac{1}{n}$.
$A I_{\text {so, }}$ he know $a \geqslant 0$.
Thus $0 \leqslant a<\left(+\frac{1}{n}\right.$, and tense $a \in\left[0,1+\frac{1}{n}\right)$ - 0

